
Software automation on TELESTO
Louis Dumas

louishenridanielpepito.dumas@epfl.ch,
under the supervision of:

Stephan Hellmich
stephan.hellmich@epfl.ch,

Laboratoire d’astrophysique de l’EPFL
January 2022

mailto:louishenridanielpepito.dumas@epfl.ch
mailto:stephan.hellmich@epfl.ch

Contents

1 Introduction 2

2 Initial software configuration 4
2.1 List of software . 4

2.1.1 OSBus Controler . 4
2.1.2 Maestro . 5
2.1.3 TheSkyX Pro Edition . 5

2.2 Software environment . 6
2.3 Issues with the current software setup . 7

3 Automation: Benefits and Implementations 8
3.1 Automation priority . 8
3.2 Overview of satellites coordinates computations 8
3.3 Implementation . 10

3.3.1 Programming language and libraries 10
3.3.2 TelestoInLine: description . 10

3.4 Problems encountered . 11
3.4.1 Computer problem . 11
3.4.2 Pointing model . 12

3.5 Testing . 12

4 Project prospect and conclusion 13
4.1 Prospect . 13
4.2 Conclusion . 13

5 Acknowlegment 14

Appendix 17

A Mail 17

B Program Documentation 18

1

1 Introduction

TELESTO is a F\3.8 600mm reflector telescope, fig 1.1 by Officina Stellare that was installed
in 2017 in the AstroDome (AD) at Sauverny Observatory (Geneva -CH). For the last five
years, its use has been limited to pedagogical purposes for the students of the University of
Geneva (UNIGE) and the Ecole Polytechnique Fédérale de Lausanne (EPFL).

Figure 1.1: Picture of the TELESTO

2

The need for an automated, easily accessible and not necessarily powerful telescope arose
with the recent research domain of satellites, debris and asteroids detection and tracking.
Indeed, space congestion, particularly in Low-Earth orbit(LEO), has become a major issue
in the last decade. It poses a major threat to astronauts and satellites security, while also
deteriorating observations. Moreover, the interest of students of the Space Sustainability
Awareness (SSA) association from EPFL for TELESTO now justifies the automation. The
goal of the software automation is to avoid interactions as much as possible with all the
initial software providing a centralized program in order to use the TELESTO. We will
first describe the initial software installation of the TELESTO, how the different softwares
interact and problems they could cause, then we will describe which steps in the automation
were achieved and how. Finally, we will talk about what kind of problem were encountered
and then as a conclusion we will give some indication on what could be done next. Note
that the first part will mainly be taken from the prework done during the previous semester
by Kent Barbey[1].

3

2 Initial software configuration

2.1 List of software

The TELESTO is controlled by 3 softwares communicating together. They are all installed
on the computer in the control room of the Telescope. The computer’s OS is Windows 10.

2.1.1 OSBus Controler

OSBus Controller is the software provided by Officina Stellare to control some hardware
components of the Telescope. It is used to do dome communication, shutters control, fan
control and primary collimation. The main windows is presented with figure 2.1

Figure 2.1: OSBus main tab

4

2.1.2 Maestro

Maestro is an ATCS (Astrometric Telescope Control System) user interface (see figure 2.2).
It manages all the astrometric part, the pointing model, the mount, the sideral tracking,
the motors speed, the alignment and a lot of other parameters. As it is not user friendly at
all we use TheSkyX Pro Edition (abbreviated as SkyX) to send the correct informations to
Maestro.

Figure 2.2: Maestro main tab

2.1.3 TheSkyX Pro Edition

Finally, SkyX is certainly the most important software from the user view. It is a user
friendly interface used for observation. It communicates with Maestro through ATCS to
perform operations. Anything an user can do for an observation can be done with SkyX,
like taking pictures , pointing, guiding, seeing object specification among another things.
It has an integrated planetarium (2.3) and multiple catalog of celestial object. It makes
observation really easy. And the most important thing is that you can perform operation in
SkyX by sending JavaScript string through TCP port as descibed in the user manuel[2].

5

Figure 2.3: TheSkyX Pro Edition

All these interactions can be described with the following figure 2.4:

Primary mirror
protection shutter

Telescope Fans

Telescope Thermal
 sensors

Telescope Focuser

Flip Mirror

Filter Wheel

CCD

Dome

Final End user software

PS Switcher

OS Bus controler

Mount

The SKyX FLI CCD driver

The SKyX FLI Fliter Wheel driver

ASCOM POTH HUB

Powers

Powers

Powers

Figure 2.4: TELESTO softwares interactions

2.2 Software environment

In addition to the three primary software tools, there are several other software options
available. For the purpose of this discussion, we will focus on just two of these additional
tools. First there is the plone[3]1 that contain a lot of resources for the TELESTO like
documentation for SkyX or the starting sequence of the telescope. There is also the remote
storage that contains all observation data.

1plone is a web content management system. In our case it mainly serves as database for the documen-
tation and pictures

6

2.3 Issues with the current software setup

There is a certain amount of problems with the current software installation. First, all the
interaction between the 3 softwares leads to a complicated starting sequence as described
in the corresponding document on the plone[3]. Moreover there is some design error that
can break the pointing model during this sequence. It will be describe more precisely in
the section 3.4.2. The documentation of the different softwares are either very complex like
SkyX with a user manual of almost 700 pages, or non-existant like for OSBus Controler. The
interface of SkyX is sometimes very confusing with a lot of settings and parameters that are
not clear. And finally there is no way to point or track satellites which is very important in
the usage of the TELESTO.

7

3 Automation: Benefits and Implemen-
tations

3.1 Automation priority

As we saw in section 2.3 the main problem of the current software installation is the complex
usability. The idea of the automation is to provide a single program that would make the
users able to do everything in this program. It must at least automate the starting procedure
and take in charge all basic feature of SkyX for observation like pointing, taking images,
selecting filter and tracking satellites and debris.

3.2 Overview of satellites coordinates computations

The main feature we want to implement is the satellites localisation at a time t. Here the
detail of how to compute satellites coordinates. First we need to define the epoch, which has
to be as close as possible to the observation time. Then we need some orbital elements to
make computation: mean anomaly at epoch Me, mean motion n, inclination i, eccentricity
e and semi-major axis a as described in figure 3.1. With these elements will be able to do a
sequence of computation to get coordinates:

• first we compute the mean anomaly M :

M = (n(t− epoch) +Me

• then we compute the eccentric anomaly E by solving the following equation with
Newton’s method:

M = E − e sin(E)

• after computing eccentric anomaly we have to compute the true anomaly ν:

ν = 2arctan(

√
1 + e

1− e
tan(E/2))

• finally, we compute semi-major axis a from the following formula:

a =
T 2Gm

4π2

with T being the period extracted from n, G the gravitational constant and m the
mass of the earth.

8

Figure 3.1: Orbital elements: a semi-major axis, e eccentricity, i inclination,
Ω right ascension of ascending node, ω perigee, ν true anomaly, E eccentric anomaly,
M mean anomaly

• From a and ν we can compute Cartesian coordinates as the following:

r = a
1− e2

1 + e cos(ν)

x = r cos(ν)

y = r sin(ν)

• then apply the following rotation to align the previous plan with equatorial plan:

cos(i) -sin(i) 0
sin(i) cos(i) 0

0 0 1

• we need to apply another transformation to get geocentric coordinates.

• Finally, using geocentric coordinates and the observer position on Earth we can calcu-
late topocentric coordinates of the satellite.

Hopefully, we can avoid all these complexes computations in the program using libraries
as describe in the next section.

9

3.3 Implementation

We decided to do a command-line interface called TelestoInLine because it is a more conve-
nient way to avoid interface complexity and as we do not need too much commands it will
have a light documentation. For the moment our program implements basic pointing, satel-
lites tracking, automated TLE loading, a part of image managing, observer customizable
settings and a beginning of starting procedure automation.

3.3.1 Programming language and libraries

Programming language: Python

We decided to use python, despite the use of JavaScript by SkyX for multiple reasons.
First, python is a way more robust language than JavaScript which is known for a lot of
inconsistencies. Secondly there is a lot of scientific oriented libraries on Python that will be
useful. Finally, as this is a long term project a high-level language is preferable to make it
easy for the next person to add features.

Libraries

We use 4 different libraries:

• the cmd library[4] to implement the interface, it is a framework to easily implement line-
oriented interpreter. We said earlier that we implemented a command-line interface, it
is not exactly right because we cannot run the command we created in any terminal.
We must launch TelestoInLine to use our commands. It seems to be a constraint
but it is a security measure. As we have a very precise starting procedure we don’t
want the user able to launch any command before the starting procedure is done. So
having a specialized environment to run commands is the best way to avoid this kind
of problems.

• the skyfield library[5] is a astrometric oriented library that made coordinates, ephemeris
computation and astronomic information loading very easy, it will be the core of satel-
lites coordinates computation.

• the PySkyX library[6] is an interface that made able python to communicate with
SkyX sending JavaScript strings over TCP port. It has a lot of built-in functions for
pointing, imaging and telescope settings in general.

these module interactions could be found at figure3.2

3.3.2 TelestoInLine: description

TelestoInLine is, as described above, a command-line interpreter with a custom set of com-
mands. The current section’s purpose is to briefly detail how TelestoInLine works and how
to use it. First, the program is made of 9 commands. Their documentation is available in
appendix B. To implements the majority of our features we decided to communicate with
SkyX instead of directly using ASCOM driver. This is easier to code and avoids a lot of

10

hardware and low-level problems. However, we need to find a way to communicate using
JavaScript so we use PySkyX. To point at stars or planets we simply send instructions to
SkyX. Indeed it recognises these types of target. But SkyX does not have data on satellites
or debris coordinates. We then have to compute the coordinates by ourselves. When one
wants to point at a satellite, the program will verify that it exists in the different TLEs it
has loaded. We then compute the coordinates that the satellite will have one minute later
using Skyfield. Then the telescope will point to these coordinates and track the satellite
by recomputing coordinates until we stop the process or the satellite become to low in the
sky. Note that all pointing and tracking functions are not usable if the starting procedure is
not launched beforehand. All other command are trivial implementation using PySkyX or
Skyfield.

Figure 3.2: TelestoInLine logical scheme

3.4 Problems encountered

We encountered several challenges on the automation, understanding the different APIs, the
software configuration and how they interact were the main challenge. Those challenges were
solved but there are 2 main problems that either slowed down the project or revealed real
infrastructure issues.

3.4.1 Computer problem

The first problem was the programming environment on the computer in the control room.
It seems that people who previously tried to write software or automation script had not
a clear idea of what was install on the computer. There were multiple versions of python,
all being in conflict with each others leading to some python commands not working for
program launching (py and python commands). We had to uninstall all python versions an
reinstall one version and reconfigure environment variables. It would be a good idea to have
a documentation of what is already installed on the computer about the programming frame-
work or even better a virtual environment like Docker 1 where we are sure that everything is
installed correctly.

1Docker is is a platform for launching software in secure container, https://www.docker.com/
11

https://www.docker.com/

3.4.2 Pointing model

The second problem is the biggest one. There is a real lack of understanding of the interaction
between all softwares leading to great design fault and a fairly arbitrary startup procedure.
Unfortunately we made an error in the starting procedure during testing session. It seems to
have erased pointing model offset. The problem was supposed to be fixed by the engineers
in charge of the TELESTO but it seems that it hasn’t been done yet.

3.5 Testing

We were able to test the telescope movement, image binning and the following procedure.
However, We could not test pointing precision for 2 reasons. First during the whole semester
the weather was very cloudy and the only observation window was during the 11th week.
Secondly, because of problem we describe at subsection 3.4.2 the pointing is malfunctioning
leading to pointing error of 1°. In the last news, it wasn’t fixed yet. So it is pretty sure that
the TELESTO does not point at the right place for the moment.

12

4 Project prospect and conclusion

4.1 Prospect

There is a lot more work to do before having a full automation of the TELESTO. The list
below describe some ideas to implement, as well as incomplete features:

• Finishing imaging implementation. For the moment we can’t take pictures from
TelestoInLine directly, we still need to use SkyX. It would be great to have this possi-
bility and implement it correctly. It includes taking picture, dithering, filter selection
and any other feature that seems relevant. However, it implies that the tracking part
is done asynchronously to make user able to take a picture while tracking a satellites.

• Automate the starting sequence. For the moment we just load TLE files, initiate
observation time and launch all necessary softwares. We do not implement really the
starting sequence. A good beginning would be to automate the Maestro part. As
OSBus Controller has no documentation we sent a mail to the constructor to have
information. This mail could be found in appendix A.

• Implement a remote usage. From Barbey’s report[1] it seems to already have an ssh
server on the control computer. For the moment we need someone to turn on the
TELESTO, so we need to figure out how make a remote start-up.

• As described in section 3.5, the testing about the precision could not be done because
of bad weather and pointing model malfunction. It is an unpleasant but necessary
thing to do.

4.2 Conclusion

The software automation of the TELESTO is not complicated by itself. We made great
progress by implements some of the core features for the expected usage of this telescope.
However, the lack of documentation, design fault in the starting sequence and the necessity
to make a lot of roundtrip between Lausanne and Geneva slowed down a lot project progress.
We hope this report gave a good idea of what was already done and what needs to be done.

13

5 Acknowlegment

I would like to thanks B. Chazelas, G. Chaverot and K.Barbey for the answers they gave
me and the time they spent on their work time for this project. I also want to thanks K.
Sturrock for his library. If there is any need to question him on how his library works he can
be contacted on the cloudynights[7] forum by private message.

14

Bibliography

1. Barbey, K. Prework on automating the TELESTO tech. rep. (Laboratoire d’astrophysique
de l’EPFL).

2. TheSkyX Pro User Guide Software Bisque ().

3. Chazelas, B. the plone https://plone.unige.ch/astrodome/telesto.

4. cmd library Python Software Foundation. https://docs.python.org/3/library/
cmd.html.

5. Rhodes, B. Skyfield, Elegant Astronomy for Python https://rhodesmill.org/skyfield/.

6. Sturrock, K. SkyX Python Library https://github.com/kenneth-sturrock/PySkyX_
ks/blob/master/PySkyX_ks-27SEP2022.zip.

7. cloudynights forum https://www.cloudynights.com/.

15

https://plone.unige.ch/astrodome/telesto
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://rhodesmill.org/skyfield/
https://github.com/kenneth-sturrock/PySkyX_ks/blob/master/PySkyX_ks-27SEP2022.zip
https://github.com/kenneth-sturrock/PySkyX_ks/blob/master/PySkyX_ks-27SEP2022.zip
https://www.cloudynights.com/

Appendix

16

09/01/2023 13:35 Courrier - louishenridanielpepito.dumas@epfl.ch

https://ewa.epfl.ch/owa/#path=/mail/search 1/4

R: OSBus Controller API

Dear Louis,

Understood, thanks. I doublechecked and this indeed has an OSBUS installed, so you should be able to achieve what you
had in mind by following the instruc�ons I sent last �me:

· Control the secondary mirror focuser/�p-�lt (if present) using ASCOM drivers that I can send you
· Controlling fans and environmental probes through the .exe version of the BUS interface

The new software can be used as a GUI or as a command line tool.

Calling it from windows prompt with the -h.

Usually the exe file is in:

“C:\Program Files (x86)\Officina Stellare\OSBus Controller\OSBusController.exe"

Anyway, this is the brief of the command line options:

-h Show help

-s[1-0] Open or close shutter

-f[0-100] set the fan speed from 0 to 100%

-m Execute an homing sequence for M2

-ge return environmental data

-gs get shutter status

-gf get fan speed

Of course some might be out of scope for you (e.g. shutter status and control if you don’t have shutters on your telescope)

Best,
Luca

Da: Dumas Louis Henri Daniel Pepito <louishenridanielpepito.dumas@epfl.ch>
Inviato: giovedì 17 novembre 2022 14:13

Luca Bonato <Luca.Bonato@officinastellare.com>
jeu. 17/11/2022 17:15

Boîte de réception

À :Dumas Louis Henri Daniel Pepito <louishenridanielpepito.dumas@epfl.ch>;

A Mail

17

B Program Documentation

TelestoInLine is a command-line interpreter to automate the TELESTO. It is made of 9
documented commands and 1 undocumented command used as an alias to use Ctrl+C. We
describe these commands below.

• add_catalog [type] [url or path file]: type:

– sat for satellites

– deb for debris

Save the path or the url or the path file for subsequent execution. If start command
was already done load the TLE directly.

• help [command name]: Describe the documentation for the specified command.

• ?: List all the commands

• start: Launch all necessary software, load known TLE, initialize observation time and
connect camera.

• target_celestial_body [object name]: point to the specified object if it exists in the
SkyX database. Can be launch only after the start command

• exit: Disconnect camera and close all software and the command-line interpreter.
Warning: do not close the program in another way.

• set_bin: Change the binning of the camera.

• stop_following: Prototype for asynchronous execution of targetsatellites. Not usable
for the moment.

• target_satellites [NORAD ID]: If the NORAD ID exists in one of a saved TLE
compute the position in one minute then track the satellites. Stop if the satellites is
too low in the sky or if the user use Ctrl+C. Can be launched only after start command

18

