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1 Introduction

The objective of this research project is, first of all, to provide the theoretical notions re-
lated to the interferometry and its application to calculate the diameter of stars and planets.
Secondly, it is to present the experiment conducted with the TELESTO telescope at the
observatory of Geneva. This experiment aims to investigate the possibility of calculating
the diameter of Mars using interferometry.
Initially the goal was to calculate the diameter of some of the planets in the solar system, but
due to the lack of time it was decided to focus only on the analysis of a single planet. Mars
during this winter was very close to the earth and therefore clearly visible, so it was decided
to take the latter as reference. Moreover, the trees around the observatory prevent observing
objects below 20-25◦ of altitude (depending on the weather); therefore other bright planets
such as Jupiter or Saturn that were low in the sky were discarded for analysis. The report
is divided in 4 sections. After a historical excursus, the first part provides the theoretical
introduction regarding the particular properties of light and the concept of interferometry
and diffraction. In the second part we focus on the experimantal activity, on the procedure
of the analysis and on the results.

1.1 Historical excursus

The major problem in astronomical observations is the detection of distant objects and then
the improvement in spatial/angular resolution.
For a long time starting from the time of Galileo Galilei (1564-1642), astronomers and
astrophysicists have tried to increase the size of telescopes more and more to improve the
spatial resolution of observations. In fact, the angle θ at which is seen an astronomical
object depends on the telescope diameter D and the wavelength of the light, λ, through
the formula: θ = λ/D. The image of a light source like a star or a planet given by a
telescope is reproduced in Figure 1(a). There is the plane wavefront (in blue) which falls
on the telescope of diameter D [9]. The resulting image is a diffraction pattern, with the
maximum at the centre. For instance, with a wavelength of 500 nm and a dimeter of 1m, we
should be able to detect an object which an angular size of 100 milliarcseconds, as Proxima
Centauri, which is the nearest star to our solar system. Starting from this reasoning, one
could therefore think that with an ideal telescope with a huge diameter it would be possible
to calculate the diameters of all celestial objects. However, for distant objects, there is
another difficulty: the turbulent motion of the Earth’s atmosphere. This turbulence affects
the resolution of the image. The majority of stars are far away from us and even today’s
largest telescopes such as the Very Large Telescope in Chile (8.2 diameter), are unable to
directly resolve their angular dimensions.
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Figure 1: Diffraction pattern generated by the light of a star considering or not the atmo-
spheric turbulence (respectively b and a)

The problem is linked with the diffraction limit [9]. In fact, to obtain a clear image, the light
of an observed star has to converge at the focus of the telescope and all the photons arriving
to the mirror have to be in phase. Any scratch in the mirror or variation of the refractive
index in the atmosphere can cause a phase difference. The reason is quantitatively explained
looking at Figure 1(b). If we attribute a size of r0 (typically 10 cm at visible wavelengths) to
the atmospheric disturbances, the error in phase would be around one radian. The obtained
image would be smooth and the new wavelength would be equal to λ/r0 (dashed line). As
a result it would be very difficult to find the real size of a distant star. High-resolution
observations require to use adaptive optics instruments to correct the effects of atmospheric
turbulence.
Hippolyte Fizeau (1819 − 1896) was the first who proposed to use interference of light in
order to overcome the difficulty to build big telescope [1]. His idea was to cover the top of the
telescope with an opaque object, leaving two holes less than 10 cm in size. This technique is
called spatial interferometry. Thanks to this technique, Albert A. Michelson and Francis G.
Pease obtained the first successful measurement in 1920 [1]. They determined the diameter of
α Orionis to be 0.047 arcsec. This was an incredible result, because at that time the smallest
diameter that was calculated with a simple telescope was around 1 arcsec. Nevertheless,
spatial interferometry was then abandoned until the seventies, because of technical issues
with the mechanical stability at large distances between the pinholes.
In 1974 Antoine Labeyrie had the idea to combine two different telescopes instead of doing
spacial interferometry with two pinholes on the same telescope. The results were exactly
the same as those obtained with two pinholes, with the advantage that the separation
between two indipendent telescopes could be much greater than the distance between two
pinholes. The benefit of spatial interferometry is that the resolution depends only on the
distance between the two piholes or telescopes, quantity which is called baseline. However,
the improvement in resolution thanks to spacial interferometry has some flaws. Firstly, it
is needed to do many observations at different baselines and orientations, to achieve a clear
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image of faint objects in the space. Secondly, if two large telescopes are used, it is necessary
to take into account an adaptive optics to eliminate the seeing problem.
In our experiment, as we will see better in the description of the experimental apparatus,
we use pinholes with a diameter of few millimeters and therefore we can ignore the problem
of atmospheric turbulence.

1.2 Fundamentals

1.2.1 Intensity pattern given by a two pinholes aperture

Let us consider the intensity distribution given by the light coming from a circular source
which passes through a two pinholes aperture placed sufficiently distant from the source.
The mathematical formula of the intensity pattern is given by the product between the
interference due to the double aperture and the diffraction given by the finite radius of each
of them [9].
Firstly, let us define the “Point Spread Function”: it is a function which describes the two-
dimensional distribution of light in a telescope focal plane for astronomical point sources.
For a circular converging aperture the resulting PSF, given by the Fraunhofer diffraction,
is called Airy disk and its expression is [6]:

PSF (v) =

∣∣∣∣2J1(v)v

∣∣∣∣2 , where v =
2π

λ

(
a

f

)
r (1)

where J1 is the first-order Bessel function, v is known as the optical distance and depends
on r, which is the radial distance from the optical axis in the focal plane. a is the radius of
the aperture, λ is the wavelength of the light, and f the focal length. The representation of
the Airy Disk on the focal plane is shown in Figure 2 on the left. As regards the interference

Figure 2: On the left: 2D representation of the Airy Disk. On the right: 2D representation
of the interference pattern given by two slits. λ = 879.7 · 10−6 mm, a = 1.5 mm, f = 2280
mm, pixscale = 0.810612 arcsec/pixel, B = 8 mm, I0 = 1, V = 1, theta = π

2
.
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pattern, starting from Young’s double slit experiment [1] we have that :

I = 2I0

{
1 + V cos

[
2πB

λf
·
(
x cos(θ) + y sin(θ)

)]}
(2)

where I0 is the intensity of each electromagnetic wave coming out of each slits (we assume
two identical aperture and then two equal initial intensities I0): we could re-express I0 in
terms of the maximum and the adjacent minimum intensities resulting from the interference
pattern: I0 = Imax−Imin

4V
. θ is the orientation of the slits, B represents the distance between

the two slits (baseline) and x and y represents the two axis in the focal plane (the radial
distance can be expressed as r =

√
x2 + y2). V is a very important quantity, called visibility

which I will discuss later about. The representation of Eq.(2) on the focal plane is shown in
Figure 2 on the right. The total intensity pattern given by two circular apertures is simply
given by the product of equations (1) and (2):

I = 2I0

{
1 + V cos

[
2πB

λf
·
(
x cos(θ) + y sin(θ)

)]} ∣∣∣∣2J1(v)v

∣∣∣∣2 (3)

Taking this equation we obtain Figure 3, which shows the superposition of the airy disk,
with the interference fringes.

Figure 3: On the left it is shown the 2D representation of the total intensity pattern and
on the right the 1D representation as a cut at y = 256 pixel (the total image measures 512
pixels). The two red lines represent the PSF multiplied by the maximum and the minimum
of the intensity and the blue one the total intensity pattern
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1.2.2 Visibility

More formally the mathematical expression for the visibility is [1]:

V =
Imax − Imin
Imax + Imin

(4)

where Imax and Imin represent, respectively, the maximum and the adjacent minimum on
the interference pattern. Then V oscillates between 0 and 1. The visibility, for identical
apertures, is defined as the contrast of the fringes pattern and it indicates the degree of
coherence of the light. A contrast of 1 in a fringes pattern implies a perfect constructive and
destructive interference in its maxima and minima. In other words the light waves coming
from the two pinholes would be perfectly coherent if the visibility was 1. For instance, a
monochromatic plane wave illuminating the screen with the two pinholes will create two
waves emerging from the pinholes which are perfectly coherent.
Stars and planets are sources of incoherent light. However, observing them at a great
distance (from the earth) they can be approximated to coherent sources thanks to the Van
Cittert–Zernike theorem [2]. This latter states that the wave front of an incoherent source
measured at a great distance is to be considered coherent. This reasoning can be easily
visualized by imagining two stones falling into the center of a pond. Near the center of the
pond the waves created by the two stones are very irregular in shape; then, progressively,
spreading towards the edge of the pond, they diminish and are almost circular. Similarly, a
star or a planet, seen from the earth, appears to be a coherent source of waves.
For a uniform source of light and a circular aperture the visibility results to be [5],[8]:

V = 2

∣∣∣∣J1(πBα/λ)(πBα/λ)

∣∣∣∣ (5)

where α is the angular size of the source. Changing the distance between the two holes the
interference fringes could disappear. Therefore, the easiest way to compute the diameter
of the source would be to look at the lowest value of B at which the interference fringes
disappear. Looking at Eq.(5) this occurs when B = 1.22λ

α
(V = 0). But for a more precise

value we need to fit some measured visibility at fixed baselines with Eq.(5). There are two
ways to measure experimental visibility: with the analysis in the direct space or with the
analysis in the Fourier space.

1.2.3 Direct space analysis

This analysis is clear: we can directly fit the images of Mars with the model in Eq.(3),
leaving visibility as a parameter to fit. Once the visibility for different baselines has been
extracted, they can be fitted again with Eq.(5) to obtain the angular dimension of Mars.
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1.2.4 Fourier space analysis

For simplicity, let us see the theory of frequency spectrum analysis in one dimension. If we
consider an optical, non-coherent imaging system, as is our case, the image that is formed
on the screen of our telescope is given by the convolution between the object that we are
studying (the planet in question) and the PSF of our mask [6]: Image = Object⊗PSF . By
calculating the Fourier transform of this equation we obtain: ˆImage = ˆObject · ˆPSF , where
we have applied the property that the convolution in the frequency space is equivalent to a
simple product. If we compute the Fourier transform of Eq.(3) in one dimension we obtain:

Î (fS) =

∫ +∞

−∞
I(x) · exp (−2πifS · x) dx

Î (fS) = 2I0

∫ +∞

−∞

{ ∣∣∣∣2J1(v)v

∣∣∣∣2 + V

∣∣∣∣2J1(v)v

∣∣∣∣2 cos [2πBλf · x cos(θ)
]}

e−2πifSxdx

Where v = 2πa
λf
x. Rewriting q(x) = 2πBx cos(θ)

λf
the cosine term becomes cos(q(x)) =

eiq(x)+e−iq(x)

2
, then we obtain:

Î (fS) = I0

∫ +∞

−∞

{
2

∣∣∣∣2J1(v)v

∣∣∣∣2 + V

∣∣∣∣2J1(v)v

∣∣∣∣2 [eiq(x) + e−iq(x)]

}
e−2πifSxdx

Î (fS) = I0 {T0 (fS) + V · [T+c (fS) + T−c (fS)]} (6)

The Fourier transform consists of three terms: each of them describes a triangular-shaped
peak [4]. The first one, T0 (fS), which is the Fourier transform of the term with the Bessel

function
∣∣∣2J1(v)v

∣∣∣2 (single-pinhole diffraction), describes the central peak around fS = 0. The
second and third terms, T±c (fS), describe the spatial frequency shift due to the product
between the diffraction and the interference terms. If the two holes are identical, we have
that T−c (fS) = T+c (fS) ≡ T±c (fS) and if they are small enough (their diameter is less than
at least two times the baseline) T0 and T±c can be approximated as two non-overlapping
functions [10]:

Î (fS) ≈

{
T0 (fS) : −c ≤ fS ≤ c

T±c (fS) : fS < −c ∧ fS > c

where c is a positive real constant. Taking the square module of the Fourier transform and
extracting the visibility we obtain that [10]:

V = 2

∫ +c

−c T±c (fS) dfS∫ −c
− inf

T0 (fS) dfS
(7)
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Figure 4 shows the PSD, namely the square module of the Fourier transform of the intensity
pattern of Figure 3. It can be seen that the three integrals refer to three separate cones in
the 2D Fourier space.

Figure 4: On the left it is shown the 2D PSD of Eq.(3) and on the right its 1D representation
as a cut at y = 256 pixel. λ = 879.7 · 10−6 mm, a = 1.5 mm, f = 2280 mm, pixscale =
| 1
0.810612·512

arcsec−1

pixel
|2, B = 8 mm, I0 = 1, V = 1, theta = π

2
.

2 Experimental set-up and observations

To measure the diameter of Mars we used a double-circular-slits mask put at the top of the
telescope Telesto (TELescope for Science, Teaching and Outreach).

2.1 Telescope

Telesto is a 60 cm diameter, reflecting telescope with a focal ratio of 3.8. The tracking system
is automatic for both the telescope and the dome. This means that once the celestial object
is set, the telescope and the dome follow the object for the entire duration of the exposure
time. Figure 5 shows the control system of TELESTO, where the red line indicates the path
of the light. Firstly the light passes though a motorized flip mirror which decides whether to
direct the light towards the eyepiece or to the digital detector (our case). Before the digital
detector there is a wheel with the filters for the light. The filters are the Johnson-Cousins
filters UV , B, V , R, I. Their curves are shown in the Figure 6. After the filter, the light
goes to the CCD detector. It is a FLI PL16803 detector, which has different features:

• Camera reading speed: 1 Mhz or 8 Mhz (minimum reading time ∼ 2.1 s)

• 4096 x 4096 pixels array
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Figure 5: TELESTO control system

Figure 6: Johnson-Cousins UBVRI filter curves

• Pixel size: 9 µm

• Plate scale: 0.810612 arcsec/pixel: calculated through the site Astrometry.net [a],
which automatically calculates the plate scale of a telescope just analysing an image
that contain several stars.

9



The telescope is mainly controlled eletronically with the Astrometric Telescope Control
System (ATCS), which connects the PC to: the motorized flip mirror, the wheel with the
filters and the camera. The resulting images are saved in file.fits and the analysis is done
through python.

2.2 Masks

Concerning the masks, firstly I built rigid cardboard masks with the help of the workshop
of the department. The pinholes have a diameter of 2 and 4 mm and the baselines are:
3.5, 6, 8, 10, 12, 16, 20, 24 and 28 mm. Afterwards, to have more precise masks, we
requested to the workshop of the department to build aluminum masks with pinholes of 3
mm as diameter and baselines of: 4.5, 6, 8, 10.5, 13.5, 17, 21 mm. The baselines and the
diameters of the masks were chosen by studying the size of Mars a priori and then assuming
its visibility curve as known. The Figure 7 shows some of the rigid cardboard masks and
the Figure 8 the scheme of the Aluminium masks. Although the first masks were simple

Figure 7: Rigid cardboard masks masks used for the experiment. The two pieces of paper
on each mask are meant to help to remove the masks from the telescope lid.

and made by hand with a material not completely opaque to light, the interference pattern
was clearly distinguishable in the images that we took. This is incredible considering the
simplicity of the setup.

2.3 Observations

Theoretically, it would have been optimal to observe Mars the highest number of nights.
Unfortunately, however, in this period of the year the clouds often prevent the observation
of Mars. So it was decided to choose nights with few clouds and a clear sky and make the
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Figure 8: Aluminium masks scheme by the workshop of the department

observations accordingly. Moreover, as already said in the introduction, the trees around
the observatory prevent observing objects below 20 − 25◦ of altitude (depending on the
weather); therefore this factor also had to be taken into consideration.
We did in total 3 observations. The first was on the 8th of October and we used the cardboard
masks. There were some low clouds and Mars had an altitude less than 22◦; then, we decided
to observe a bright star (Vega) in order to be able to do the analysis on it in preparation for
the analysis on the planet. The second observation was made on October 30th and images
of Mars and Altair were taken with the cardboard masks. We started the analysis in both
the direct space and the Fourier space. On November 13th we did the last observation of
Mars and Altair with the aluminum masks.
In these last two observations we collected data from a star like Altair in order to calibrate
the visibility of Mars. In fact, to be able to resolve the stars, they would be needed baselines
of about ten meters. Then, with our small baselines the visibility of any star should be
approximately constant and near to one. Therefore dividing the visibility of Mars with that
of Altair for the same baseline would calibrate the results of the planet.

3 Data analysis

As I said before there are two ways to calculate the angular dimension of a planet: through
an analysis in the direct space or an analysis in the Fourier space, let us see each of these
specifically. The python codes that we used for the data analysis are shown in the appendix.

3.1 Direct space analysis

As already explained in the theoretical part, the analysis in the direct space consists in
measuring the visibility for each baseline and then fit the obtained visibility with Eq.(5) to
obtain the diameter of the planet. In particular, starting from the initial image of Mars
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we identified the center of the image as the pixel with the maximum intensity and cut the
image into a square of size 256 x 256 pixels (Figure 9a). Then, we substracted from the
image the median of the image itself; considering that Mars occupies a small area of the
CCD the median falls certainly into the background noise. So, it is like carrying out a first
cleaning of the noise (Figure 9b).
At this stage, two different paths were followed: an analysis through simple fit, i.e. mini-
mizing the chi square, or an analysis through a MCMC algorithm.

3.1.1 Simple fit analysis

Figure 9: Example of the two initial steps of the analysis in the direct space (a & b) and an
example of the simple fit result (c) for a 6 mm baseline with the aluminum mask.

After carrying out the first two steps described above, we continued by fitting the image
with the model of Eq.(3) (Figure 9c). As free parameters we took: λ, θ, the visibility, the
maximum intensity, the position of the center of the intensity pattern and the background.
We have fitted the central position of the image because it could be at a position that is
a fraction of a pixel and therefore the approximation that we did would not be exact. In
addition we have also fitted the wavelength, although we know the effective wavelengths
of our filters. This is because by fitting the image with a fixed wavelength we obtained
inaccurate results, then we decided to leave it as free parameter. A possible explanation is
given in the "Identified limitations" subsection. To minimize the χ2, i.e. to find the best
parameters of the fit, we took as errors the median absolute deviation (MAD). It is a more
robust estimator of scale than the sample variance or standard deviation because it works
better with distributions without a mean or variance as in our case. From the literature we
know that [3]:

MAD = 1.4826 ·Median(|data−Median(data)|)

where data is the list of the values of each pixel. After the minimization of the chi square,
we calculated the residuals, i.e. the difference between the observed image and the image
obtained with the estimated values. This was done in order to identify eventual bad pixels.
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In fact, another problem generally related to the telescope is the presence of random "hot"
pixels and the image analysis should be performed ignoring these pixels. This is because
these "bad-hot pixels" are not related to the intensity of light that passes through them,
but simply to an error in the measurement and therefore counting these pixels as if they
reproduced the signal would lead to wrong results. The criterion for selecting bad pixels
was the following: if a pixel (in the residuals image) had an intensity greater than 5 times
the intensity of the MAD, it was considered as bad. That is a good approximation for a
bad pixel, because it is equivalent to considering a point farther than 5 times the standard
deviation from the mean. For example, in the case of a Gaussian distribution we know that
already at 3 sigma from the mean we include 99.7% of the data, so at 5 sigma we include
practically all the signal.
The next step is the re-fitting of the image without taking into account the bad pixels
selected previously. Finally we extract the visibility and the fitted wavelengths from this
second minimization. Comparing the obtained fit and the starting image, it can be said that
our model approximates the observations very well. An example is represented in Figure
10. Here the black curves represent a cut along the diagonal and along the horizontal line
at the 128th pixel of the image of Mars taken with the 4.5 mm baseline. The red dashed
curves represent our fit, i.e. our model. The two curves are very close to each other, then
our model is assumable as correct.

Figure 10: Black curves: observed data along a diagonal (a) or a horizontal cut (b). The
data are those of Mars seen with the 4.5 mm baseline. Red curves: our fit

3.1.2 MCMC analysis

To carry out the analysis with the MCMC, a program seen in the course of Astrophysics
& Data Science was used: SAM implemented by the professor Jean-Baptiste Delisle. As
a first approximation, we took as initial values those obtained from the analysis with the
simple fit, with the respective errors. Each chain consisted of 9600 iterations. After the
calculation of the first chains, we took the averages and standard deviations of the last 2000
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iterations for each of the 7 parameters considered previously and used the latter as initial
values to restart the chain. All this is intended to ensure correct convergence of the chain.
In Figure 11 is represented an example of the two chains for the visibility. The first chain
is shown in Figure 11a and Figure 11b represents the new chain with the changed initial
values. The success of convergence is clearly visible only in the second case. Once all the

Figure 11: Example of the two chains with the MCMC analysis, for a 6mm baseline with
the aluminum mask

converging chains have been obtained, we extracted the mean and standard deviation of the
9600 iterations for each parameter. In fact, all of the medians and means for each of the
7 parameters were practically the same (the difference between the mean and the median
was far below one standard deviation). Furthermore, the distribution of the parameters has
the form of a Gaussian, so taking the mean and the standard deviation to describe their
distribution is a correct procedure. Figure 12 shows an example of the visibility distribution

Figure 12: Example of the distribution of the visibility and λ for a 8mm baseline with the
MCMC analysis.

and θ distribution for a baseline of 8 mm. It can also be guessed by eye that the two
distributions are approximately Gaussians.

3.2 Fourier space analysis

As far as the Fourier space is concerned, the first steps of the analysis are exactely the
same as those in the direct space, namely the cut and the cleaning. Then we proceed by
calculating the square modulus of the fourier transform of the cleaned image, i.e. the PSD.
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There are two methods to extract the visibility from the PSD. I will call them for simplicity:
threshold method and constant radius circle method.

3.2.1 Threshold method

We took a threshold for the intensity so that setting to zero all the values of the PSD
with less intensities than the latter, three independent figures can be distinguished. The
threshold is chosen by eye so that the intensity is the minimum possible when the three cones
are distinct figures. Even doubling this threshold, the results of the visibility remain within
a 5% and therefore the approximation made by eye is reliable. An example to understand
this analysis is shown in Figure 14.

Figure 13: Example to choose the threshold

3.2.2 Constant radius circle method

This method consists first of all on taking a circle that totally covers the central cone. The
next step is to reproduce the same circle to determine the area of one of the two external
cones (the two external cones are identical). As centers of the two circles we chose the
maximum intensity in each cone. An example is shown in Figure 14. The results with

Figure 14: Example of the constant radius circle method

the constant radius circle method gives a visibility between 99% and 100% of the visibility
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calculated with the intensity threshold method, therefore the two methods are practically
equivalent.

For both methods in the direct space and in the Fourier space, once the visibility has
been extracted the last step consists on extracting the diameter of Mars by the fit of Eq.(5).

3.3 Results

I will present the results of this last night of observation as they are the ones we have focused
on the most and that have the most accurate masks. In the last observation we used exposure
times of 300 seconds for both the star and the planet. Unfortunately Altair turned out to
have a very low SNR (Signal to Noise Ratio): the peak of Altair was around 1400 ADU and
the background was around 1000 ADU. This compromised the visibility results, which were
by no means constant. Therefore it was decided to analyze Mars omitting the calibration
with Altair.
Before showing the results it is fair to say that on the night of November 18, Mars measured
16.74 arcseconds in the sky from Versoix [b].

3.3.1 Simple Fit analysis

Baseline (mm) Visibility σV λ (nm) σλ (nm) θ (deg) σθ (deg)
4.5 0.5036 0.0094 844.42 3.38 43.803 0.019
6 0.5943 0.0112 818.22 3.28 44.888 0.310
8 0.1508 0.0076 826.53 3.46 40.889 0.362

10.5 0.1729 0.0097 821.10 4.1 53.948 0.470
13.5 0.0326 0.0072 820.75 3.87 48.553 1.503
17 0.0121 0.0081 818.36 4.38 46.369 3.571
21 0.0002 0.008 811.43 4.98 24.190 1.903

Table 1

The results of the visibility, λ and θ through the simple fit analysis are shown in Table 1.
To find the angular diameter of Mars, it was used the average wavelength of those find above,
i.e. 822.97 nm. Fitting the visibility the result turns out to be: 22.67 ± 0.09 arcseconds

with a reduced chi square of 124.54. The plot of the visibility obtained for this particular
angular diameter is represented in Figure 15a. The "theory" curve represents the visibility
of Mars taking its true angular diameter (16.74 arcseconds).

3.3.2 MCMC analysis

The results of the visibility, λ and θ through the MCMC analysis are shown in Table
2. Using the MCMC to calculate the angular diameter of Mars we obtained a value of
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Figure 15: Results of the visibility for the angular diameter calculated with the simple fit
method (a) and with the MCMC method (b)

Baseline (mm) Visibility σV λ (nm) σλ (nm) θ (deg) σθ (deg)
4.5 0.5046 0.0003 845.89 0.11 44.110 0.010
6 0.5944 0.0003 817.63 0.08 44.913 0.007
8 0.1533 0.0002 827.80 0.12 40.952 0.018

10.5 0.1739 0.0002 821.32 0.10 54.051 0.012
13.5 0.0022 0.0002 818.89 0.13 -5.381 1.192
17 0.0126 0.0002 817.04 0.12 46.252 0.100
21 0.0052 0.0003 810.69 0.13 50.700 0.190

Table 2

22.7511 ± 0.0033 arcseconds. The MCMC chain with 9600 iterations is shown in Figure
16a and the distribution of the angular diameter is shown in Figure 16b. It can be noted
that also in this case the distribution is approximately a Gaussian. The representation of
the visibility in that case is shown in Figure 15b.

Figure 16: MCMC chain result and angular diameter of Mars distribution

3.3.3 Fourier space

In the Fourier space for the shortest (4.5 mm) and the longest (21 mm) baselines it was
impossible to obtain three distinct circles in the fourier space, then we decided to ignore
them. Furthermore, it was not correctly established how to identify the wavelength and the
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errors. Therefore the results are simply limited to the calculation of the visibility with the
threshold method:

Baseline (mm) 6 8 10.5 13.5 17
Visibility 0.597 0.166 0.177 0.038 0.017

4 Conclusions and perspectives

The results of the two direct methods are quite similar except for the 13.5mm baseline. This
can also be seen from the two orange curves in Figure 15, which are practically identical.
The results are slightly distant from the theoretical value, but it is nevertheless amazing
how spatial interferometry can give these precise results with such small apertures. The
results of visibility in the Fourier space are also similar to those obtained in the direct space
and this is a confirmation of the correctness of both the analysis.

4.1 Identified limitations

The biggest identified problem is the high reduced chi square in the case of the simple fit
analysis. This can be due to different limitations. Let us show them comparing our different
results:

• At the largest baseline (21 mm) there is a problem related to the analysis through
simple Fit. θ turns out to be completely different from the previous ones. This is quite
paradoxical: it is true that the angle was chosen "by eye", but still trying to keep the
same orientation. Then 20 degrees of difference are not realistic. Similarly there is a
failure of the analysis with regard to theta in the case of the analysis by MCMC for
a baseline of 13.5. A possible solution could be to set limits for the fit of the data,
preventing the analysis from giving wrong results. This is not as simple as I said and
it would require a more in-depth study.

• In reality, the tracking of Telesto is not perfect and for long times of exposure there
can be negative consequences on the data taking, due to the non-continuous, but
discretized motion of the telescope. These consequences consist of a "trail" of photons
following the discrete movement of the telescope. Then, the the Airy disk would turn
out to be elongated along an axis. The tracking does not affect the data for a time of
exposure of approximately less than one minute. For longer exposure times there is a
shift of the interference fringes. This causes a systematic decrease of the visibility and
it could explain the fact that most of our visibility results are inferior to theoretical
ones (Figure 15).
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• We actually considered Mars to be a uniform and circular source of light. This is
partly wrong because Mars is not actually a circular and uniform disk. As an example
just look at Figure 17. On the top left there is a photo of Mars taken on November
18th with a single aperture of 50 mm in diameter. On the bottom left the yellow figure
represents the pixels that have an intensity between 5% and 100% of the maximum
intensity of the top left figure. On the right the images show different cuts of Mars
(horizontal, vertical and along the diagonals). It can be clearly seen that Mars is not

Figure 17: On the top left Mars seen with a single aperture of 50 mm in diameter. On
the bottom left is shown the mask with the pixels having an intensity higher than 5% of
the intensity peak. On the right the four images represent the intensity for different cuts of
Mars

circular and that it does not have a uniform intensity. Therefore our model for the
visibility is not completely correct. One method to find a better model is to use a
mask with multiple holes, as I will explain in the next subsection.

• Linked to the previous point is the fact that the angle of inclination of the baseline
cannot be fixed. If it was possible to fix this latter we could calculate the real diameter
of Mars along this angle and then verify whether the experimental result is actually
more similar to the real one. One way to fix the angle, for example, could be to draw
reference lines in the hole where the masks are placed. In this way we could, with a
good approximation, place the baselines always at the same angle.

• A limit, which can be easily overcome, is that of the calibration with a star. In our
case, the SNR of Altair was too low, so it would be sufficient to select a brighter star
and the problem would be solved.

• One limit concerns the error estimation. They are very low and probably underesti-
mated. In the graphs of Figure 15 the error bars are not visible as their values are
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very low. To overcome this impediment it would be necessary to revise the program
that was used to fit the parameters. For the MCMC analysis we could chose not to
take the error of a Gaussian distribution and change the method of choice.

• The last point concerns the wavelength. It would be helpful to find a way to determine
accurately the effective wavelength for each filter. The CCD response should be studied
in conjunction with the effective curve of the Jhonson-Cousins filters and the spectral
curve of Mars. Furthermore, the wavelengths obtained from the fits and the MCMC
analysis are very variable. This may be due to the transmission / absorption properties
of the atmosphere. The latter may vary slightly over time causing slight variations in
the wavelength.

4.2 Forseen improvements

Besides improving the points listed above there are some other possible works that can be
done. We could apply the analysis both in the direct space and in the Fourier space to
different planets of the solar system. Another interesting work that could be applied is to
make masks with more than two holes. The resulting image would show the interference
between each pair of holes. This could be a remedy for the model of Mars. We considered
it as a uniform and circular disk, but we have seen in the limitations that this assumption
is incorrect. By using a mask with several holes and by implementing some dedicated
algorithms it would be possible to reconstruct the image of Mars and to find a better model.
Out of curiosity, we tried to build some cardboard masks with three holes, positioned on
isosceles or equilateral triangles. We got images like the ones shown in Figure 18. However,
we did not dwell on the analysis of these last images, but it would be interesting to study
them, especially in the Fourier space. Of course, masks with more than three holes could also
be used and the analysis, although if more complicated, would lead to even more accurate
results.

Figure 18: Mars in direct or Fourier space observed with cardboard masks with 3 holes
placed on an equilateral triangle (left) or on an isosceles triangle (right)
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Appendix

Below are shown the python codes used for data analysis.

import scaledAdaptiveMetropolis as sam

import matplotlib.pyplot as plt

import numpy as np

from matplotlib.colors import LogNorm

from scipy import special

from astropy.io import fits

import scipy.optimize as opt

from astropy.nddata import Cutout2D

from scipy.optimize import minimize

Simple Fit analysis

def PSF1(params,extra):

lbdEff_mm,theta_deg, V, Imax,dx_as,dy_as,bg_adu = params

Dhole_mm, Baseline_mm,imSize,pixscale = extra

theta_rad= theta_deg/180*np.pi

x = np.arange(imSize)-imSize/2

x_as = pixscale * x[:,np.newaxis]

y_as = pixscale * x[np.newaxis,: ]

r_as = np.sqrt((x_as-dx_as)**2 + (y_as-dy_as)**2)

fcutHole_asm1 = Dhole_mm/lbdEff_mm * np.pi / (180*3600)

arg = np.pi*fcutHole_asm1 *r_as

arg[arg==0]=1e-6#protect against division by zero

psf =(2*special.jv(1, arg)/arg)**2

fBaseline_asm1 = Baseline_mm/lbdEff_mm * np.pi / (180*3600)

du_asm1 = fBaseline_asm1*np.cos(theta_rad)

dv_asm1 = fBaseline_asm1*np.sin(theta_rad)

q=2*V/(1+V)

fringes = 1 + q/2. * (

np.cos(2*np.pi*((x_as-dx_as)*du_asm1+(y_as-dy_as)*dv_asm1)) -1. )

image=Imax*psf*fringes+bg_adu

return image

def chi2(params,noisyImage,sigmaMap,extra, badPixelList=[]):

model_image = PSF1(params,extra)
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residualMap = noisyImage-model_image

squaredNormalizedResidualMap = (residualMap/sigmaMap)**2

if len(badPixelList)>0:

squaredNormalizedResidualMap[badPixelList]=0.0

chi2 = np.sum( squaredNormalizedResidualMap.flatten() )

return chi2

file_name='3I _Slot 1_Slot 0__300,000secs_NoTarget00016885.fits'

image_data = fits.getdata(file_name)

position = (2065,2060)

imSize = 256

cutout = Cutout2D(image_data, position, (imSize,imSize))

im=cutout.data

#subtract background

im = im - np.median(im)

#estimation of the detector readout noise

#use median absolute deviation

detRon = 1.4826*np.median(np.abs(im-np.median(im)))

extraFirstObs= 3., 4.5,256,0.810612 #Dhole_mm, Baseline_mm,imSize,pixscale

initial = np.array(([845.8e-6,44.110, 0.5045, 7662.93,1.332,-0.497,-63.86]))

#lbdEff_mm,theta_deg, V, Imax,dx_as,dy_as,bg_adu

print(chi2(initial,im, detRon *np.ones( (imSize,imSize)),extraFirstObs) /

(imSize*imSize-7))

soln = minimize(chi2, initial, args=(im, detRon*np.ones(

(imSize,imSize)),extraFirstObs))

imRes = im - PSF1(soln.x,extraFirstObs) #residuals Observed - Modeled

imResMed = np.median(imRes)

imResMad = np.median(np.abs(imRes-imResMed))

madClip=5

good=np.abs(imRes)<=(madClip*1.4826*imResMad)

sigmaEqNormalDist = 1.4826*imResMad

badPixel=np.abs(imRes)>(madClip*sigmaEqNormalDist)

imResCleaned=imRes.copy()

imResCleaned[badPixel]=0.0

plt.imshow(np.abs(imResCleaned)**2,norm=LogNorm(1,10000), origin='lower')

soln = minimize(chi2, initial, args=(im, detRon**2 *np.ones(

(imSize,imSize)),extraFirstObs, badPixel))
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NbadPix=len(np.where(badPixel)[0])

paramStd=np.sqrt(np.diag(soln.hess_inv))

print('Number of discarded pixels : ',NbadPix)

print('chi2 = %7.2f / %7.0f'%(soln.fun, imSize*imSize-NbadPix-NparamFit))

print('chi2r = %5.2f '%(soln.fun/(imSize*imSize-NparamFit)))

print('')

paramStr=['lambdaEff [mm] =' ,' theta [deg] =','V = ', 'Imax =','dx

[arcsec] = ', 'dy [arcsec] = ','background [adu] = ']

for i,param in enumerate(soln.x):

print('%-25s %15.10f +- %11.10f'%(paramStr[i],param,paramStd[i]))

MCMC analysis

def PSF1(params,extra):

lbdEff_mm,theta_deg, V, Imax,dx_as,dy_as,bg_adu = params

Dhole_mm, Baseline_mm,imSize,pixscale = extra

theta_rad= theta_deg/180*np.pi

x = np.arange(imSize)-imSize/2

x_as = pixscale * x[:,np.newaxis]

y_as = pixscale * x[np.newaxis,: ]

r_as = np.sqrt((x_as-dx_as)**2 + (y_as-dy_as)**2)

fcutHole_asm1 = Dhole_mm/lbdEff_mm * np.pi / (180*3600)

arg = np.pi*fcutHole_asm1 *r_as

arg[arg==0]=1e-6#protect against division by zero

psf =(2*special.jv(1, arg)/arg)**2

fBaseline_asm1 = Baseline_mm/lbdEff_mm * np.pi / (180*3600)

du_asm1 = fBaseline_asm1*np.cos(theta_rad)

dv_asm1 = fBaseline_asm1*np.sin(theta_rad)

q=2*V/(1+V)

fringes = 1 + q/2. * (

np.cos(2*np.pi*((x_as-dx_as)*du_asm1+(y_as-dy_as)*dv_asm1)) -1. )

image=Imax*psf*fringes+bg_adu #one also adjust the background

return image

def computeChi2FlatIm(params,extra, flatImageObs,sigmaMap, badPixelList=[]):

ImModel = PSF1(params,extra)

flatResiduals = flatImageObs - ImModel.flatten()

squaredNormalizedResidualMap = (flatResiduals/sigmaMap)**2

if len(badPixelList)>0:
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squaredNormalizedResidualMap[badPixelList]=0.0

chi2 = np.sum( squaredNormalizedResidualMap.flatten() )

return chi2

file_name='3I _Slot 1_Slot 0__300,000secs_NoTarget00016885.fits'

image_data = fits.getdata(file_name)

position = (2065,2060)

imSize = 256

cutout = Cutout2D(image_data, position, (imSize,imSize))

im=cutout.data

#subtract background

im = im - np.median(im)

#estimation of the detector readout noise

#use median absolute deviation to do so (avoid outliers)

detRon = 1.4826*np.median(np.abs(im-np.median(im)))

extraFirstObs= 3., 4.5,256,0.810612 #Dhole_mm, Baseline_mm,imSize,pixscale

flatImageObs=im.flatten()

sigmaMap=detRon *np.ones( (imSize,imSize))

flatSigmaMap=sigmaMap.flatten()

def logLikelihood4SAM(theta):

params=theta[0:]

chi2=computeChi2FlatIm(params, extraFirstObs, flatImageObs, flatSigmaMap)

lnLike = -0.5 * chi2 - 0.5* np.sum(np.log(flatSigmaMap))

return lnLike

#begin parameters

thetaInitAvg=np.array([845.8e-6,44.110, 0.5045, 7662.93,1.332,-0.497,-63.86])

thetaInitStd=np.array([3e-6,1,0.005,50,0.15,0.15,6])

#errors

covMatInit=np.identity(7)

for i in range(7):

covMatInit[i,i]=thetaInitStd[i]**2

#Launch the MCMC

SamRawSamples=sam.sam(thetaInitAvg,logLikelihood4SAM,nsamples=32*300

,cov0=covMatInit)
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SamRawSamplesParams = SamRawSamples[0]

SamRawSamplesLnLike = SamRawSamples[1]['logprob']

#Identify Maximum Likelihood and the corresponding set of parameters

MaxLnlikeSamSamples = np.max(SamRawSamplesLnLike)

MaxLnlikeSamSamplesParams=SamRawSamplesParams[SamRawSamplesLnLike==

MaxLnlikeSamSamples,:][0,:]

SamCovMatParams=SamRawSamples[1]['cov']

labels = ["lbdEff_mm", "theta_deg", "V",'Imax','dx_as','dy_as','bg_adu']

for i in range(7):

medVal=np.median(SamRawSamplesParams[:,i])

meanVal=np.mean(SamRawSamplesParams[:,i])

stdVal=np.std(SamRawSamplesParams[:,i])

print('%10s %18.12f %18.12f %18.12f '%(labels[i],medVal,meanVal,stdVal))

Fourier analysis

lbdEff_mm = 879.7e-6

Baseline_mm = 8

N=512

file_name='8I _Slot 1_Slot 0__300,000secs_Mars00016890.fits'

image_data = fits.getdata(file_name)

position = (2070,2077)

size = (N, N) # pixels

cutout = Cutout2D(image_data, position, size)

cutout_data=cutout.data

cleaned_data=cutout_data-np.median(cutout.data)

STD=np.std(cleaned_data[0:50,0:50])

print("The background of the detector is: {0}".format(STD))

unos=np.ones((N,N))

ftIm=np.fft.fft2(cleaned_data)

psdIm=np.roll(np.roll(np.abs(ftIm)**2,64,axis=0),64,axis=1)

psd_abs=np.absolute(psdIm)

plt.figure()

plt.imshow(psdIm[20:107,20:107],

norm=LogNorm(np.median(psd_abs[0:10,0:10].flatten()),np.max(psd_abs)),

origin='lower')

plt.suptitle("PSD of cleaned image", size=20)
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mask=np.ones((N,N))

mask[psdIm<np.median(50*psd_abs[0:10,0:10].flatten())]=0.

mine=mask[20:107,20:107]

plt.figure()

plt.imshow(mine,origin='lower')

position1 = (62,63)

size1 = (25, 25) #pixels

cutout1 = Cutout2D(mine, position1, size1)

cutout1_psd=Cutout2D(psdIm[20:107,20:107], position1, size1)

new1=cutout1.data*cutout1_psd.data

right_data=new1.flatten()

sum_right=np.sum(right_data)

print("the top right integral value is {0}".format(sum_right))

plt.figure()

position3 = (44,44)

size3 = (16, 16) #pixels

cutout3 = Cutout2D(mine, position3, size3)

cutout3_psd=Cutout2D(psdIm[20:107,20:107], position3, size3)

new3=cutout3.data*cutout3_psd.data

center_data=new3.flatten()

sum_center=np.sum(center_data)

print("the central integral value is {0}".format(sum_center))

plt.figure()

print("The two ratio are the same and are equal to

{0}".format(2*np.sqrt(sum_right/sum_center)))

Mars diameter calculation

#Simple fit method

def Visibility(alpha_arcsec,Baseline_mm, lbdEff_mm):

arg=(np.pi*Baseline_mm*alpha_arcsec)/(lbdEff_mm*206265)

V= np.absolute(2*special.jv(1, arg)/arg)

return V

def chi2(alpha_arcsec,Baseline_mm,lbdEff_mm,Data,sigmaData):

model_image = Visibility(alpha_arcsec,Baseline_mm,lbdEff_mm)

27



residualMap = Data-model_image

squaredNormalizedResidualMap = (residualMap/sigmaData)**2

chi2 = np.sum(squaredNormalizedResidualMap.flatten())

return chi2

Data=[0.5036,0.5943,0.1508,0.1729,0.0326,0.0121,0.0002]

Baseline_mm=np.array([4.5,6,8,10.5,13.5,17,21])

sigmaData=[0.0094,0.0112,0.0076,0.0097,0.0072,0.0081,0.008]

alpha_arcsec=22

lbdEff_mm=879.7e-6

print(chi2(alpha_arcsec,Baseline_mm,lbdEff_mm,Data,sigmaData)/(6-1))

soln = minimize(chi2, alpha_arcsec, args=(Baseline_mm,lbdEff_mm,Data,sigmaData))

plt.errorbar(Baseline_mm,Data, yerr=sigmaData, fmt='o')

plt.plot(np.linspace(0.0,25,1000),Visibility(soln.x,np.linspace(0.0,25,1000),

lbdEff_mm),label='Fit')

plt.plot(np.linspace(0.0,25,1000),Visibility(

16.73873748,np.linspace(0.0,25,1000), lbdEff_mm),label='Theory')

plt.xlabel('Baseline (mm)')

plt.ylabel('Visibility')

plt.legend()

print('chi2 = %5.0f / %7.0f'%(soln.fun, 7-1))

print('chi2r = %5.2f '%(soln.fun/(7-1)))

print('Diameter = %5.2f +- %.2f arcsec'%(soln.x,np.sqrt(soln.hess_inv)))

#MCMC method

def computeChi2FlatIm(alpha_arcsec,Baseline_mm,lbdEff_mm, flatImageObs,sigmaMap):

VisibilityTrue=np.zeros(7)

for i in range(7):

VisibilityTrue[i]=Visibility(alpha_arcsec,Baseline_mm[i],lbdEff_mm[i])

flatResiduals = flatImageObs - VisibilityTrue

squaredNormalizedResidualMap = (flatResiduals/sigmaMap)**2

chi2 = np.sum( squaredNormalizedResidualMap)

return chi2

flatImageObs=[0.5046,0.5944,0.1533,0.1739,0.0022,0.0126,0.0052]

sigmaMap=[0.0003,0.0003,0.0002,0.0002,0.0002,0.0002,0.0003]

Baseline_mm=np.array([4.5,6,8,10.5,13.5,17,21])

lbdEff_mm=[845.89e-6,817.63e-6,827.80e-6,821.32e-6,818.89e-6,817.04e-6,810.69e-6]

alpha_arcsec=np.array([22.75085825797424])

def logLikelihood4SAM(alpha_arcsec):
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chi2=computeChi2FlatIm(alpha_arcsec,Baseline_mm,lbdEff_mm,

flatImageObs,sigmaMap)

lnLike = -0.5 * chi2 - 0.5* np.sum(np.log(sigmaMap))

return lnLike

#Launch the MCMC

covMat=np.identity(1)

covMat[0][0]=0.004169446578094459

SamRawSamples=sam.sam(np.array([alpha_arcsec]),logLikelihood4SAM,nsamples=32*300

,cov0=covMat)

SamRawSamplesParams = SamRawSamples[0]

SamRawSamplesLnLike = SamRawSamples[1]['logprob']

print(np.std(SamRawSamplesParams[:, 0]),np.mean(SamRawSamplesParams[1000:, 0]))
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