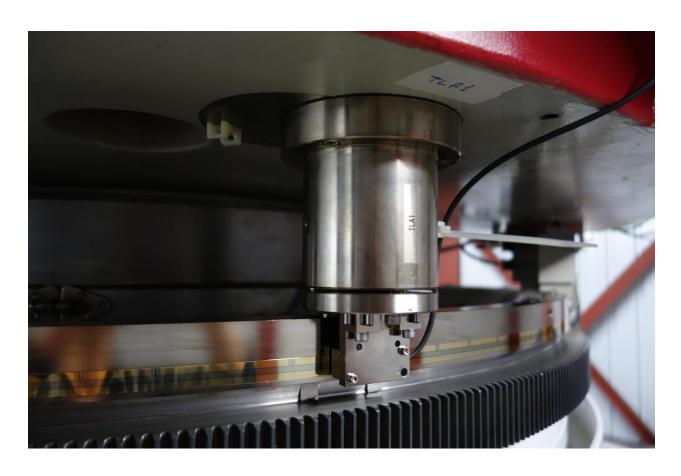
MISSION CODEUR AZMIUT

RAPPORT


DU 14 AU 28 NOVEMBRE 2022

Luc Weber

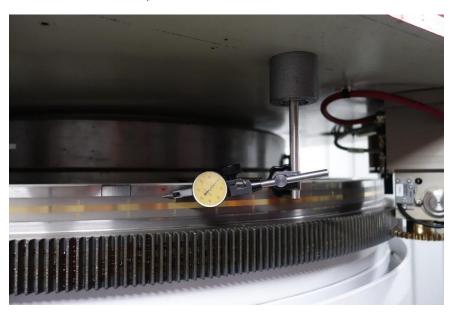
Nigel Evershed

Samuel Rihs

lan Hughes

Lu 14

Arrivée, mise en place de la zone de travail


Vérification des pièces

Préparation outillage


Contrôle du battement du ruban actuel et de la pièce support :

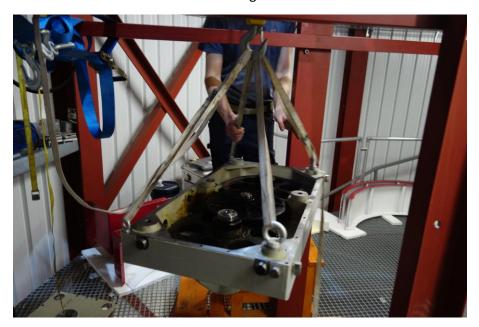
• Ruban: -0.01 / +0.02 mm, avec des sauts ponctuels de 0.05 mm

Pailler: -0.015 / + 0.01 mm

Mise en place d'un repère physique sur le télescope

Repérage de la position 0° et 90°

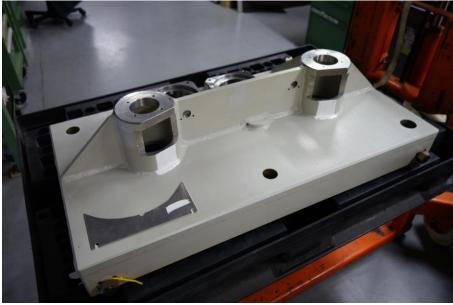
Ma 15
Vérification de l'alignement des têtes de lecture actuelle -> repère hors de la zone verte et jaune



Tentative d'améliorer l'alignement -> Sans succès

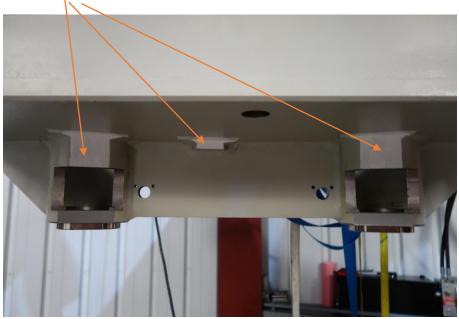
Démontage du réducteur du télescope

Descente du réducteur au niveau bodega


Démontage des moteurs et roues dentées

Nettoyage partiel des roues dentées

Meulage du carter du réducteur

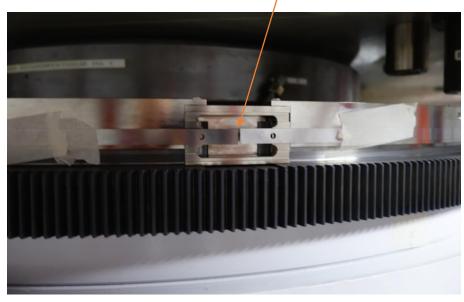


Démontage des têtes Lida

Me 16

Essai du nouveau carter réducteur. Conflit avec la coupelle de la roue dentée centrale

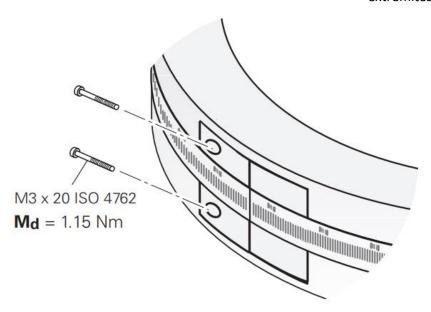
Modification du carter

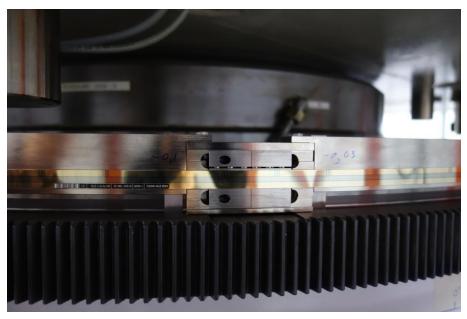

Nettoyage de la denture de la couronne

Démontage du ruban Lida

Essai de rotation du télescope « à la main » -> très peu de résistance

Pose des segments


Essai du ruban étalon. Tension à la main -> 1,5 mm de jeu. Tension avec tournevis -> le ruban se joint



Pré-alignement d'un segment -> 15μm

<u>Je 17</u>
Installation du nouveau ruban pour vérification de la longueur : sans tension -> jeu =1mm

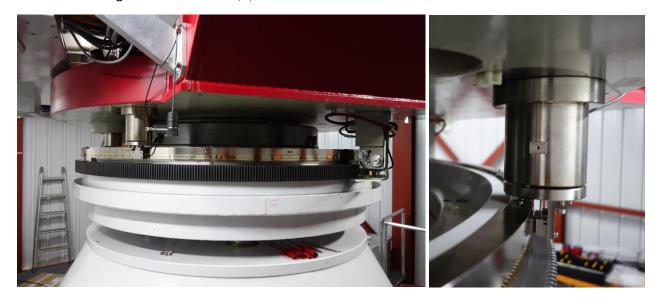
Serrage au couple ok pour joindre les 2 extrémités

Calage définitif des segments : jonctions + milieux des segments -> $15\mu m$ / entre deux 50 μm (dû à l'imprécision de la FP4)

Vérification de la position des têtes de lecture : calage de 0,3 mm verticalement

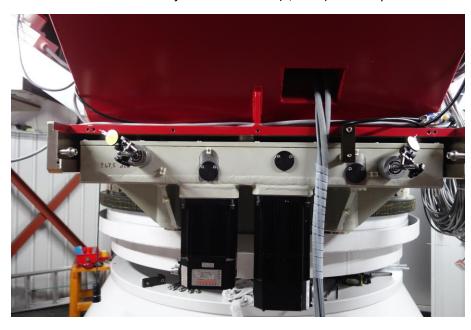
Modification supports de tête : trou pour réglage angulaire + fixation de la bride du câble

Nettoyage des moteurs du réducteur et vérification de la friction du pignon


N'ayant pas de clé à sangle, nous avons utilisé une sangle de levage, un tube rectangulaire et un morceau de caoutchouc pour protéger la denture.

-> Tous les systèmes à friction OK

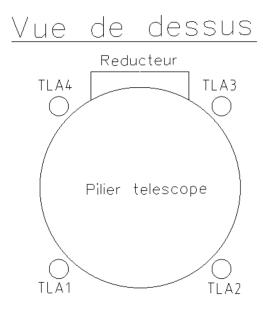
Mise en place et alignement de la première tête de lecture : tous les indicateurs dans le vert


<u>Ve 18</u> Installation et alignement des têtes 2,3,4

Remontage et graissage du réducteur

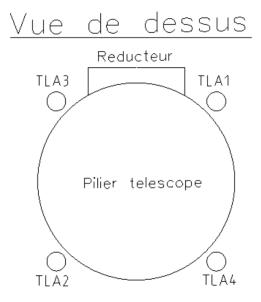
Réglage du jeu de la denture du réducteur : suite au déréglage de la butée lors du meulage du carter, nous avons dû retrouver le jeu du réducteur (0,3mm) selon la procédure

Sa 19


Démontage des accessoires pour pose/dépose du réducteur

Branchement électrique des moteurs

Premier tour motorisé du télescope à la raquette

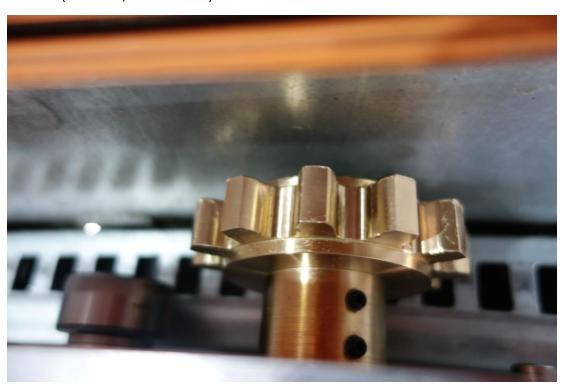

Mise en place de la $6^{\rm ème}$ vis de maintien du réducteur (à travers un trou pour le passage des tuyaux hydrauliques du palier)

Repérage de la position des anciennes têtes de lecture selon leur numérotation

Anciennes têtes de lecture (LIDA)

Repérage de l'ordre des têtes selon les « top 0 »

Nouvelles têtes de lecture (2022) Changement des interpolateur IBV-600 dans l'armoire REM et câblage définitif depuis les têtes jusqu'aux interpolateurs.



Première initialisation du télescope et détermination du nouvel offset selon le T+R (codeur absolu) : correction entre le nouvel et l'ancien offset = -0.055078 degrés.

Vérification de l'alignement de la tête TLA3 avec l'appareil d'inspection Heidenhain PWM 21 et le software de diagnostic. L'appareil a confirmé un alignement correct de la tête

Nettoyage et graissage de la crémaillère azimut de la coupole

Contrôle des dents des pignons d'entrainement azimutal de la coupole : les pignons sont encore en très bon état (environ 0,1 mm d'usure)

Di 20

Documentation Heidenhain sur Plone

Contrôle des ventilateurs Coralie

Manuel de changement d'un ventilateur Coralie

Graissage du cimier

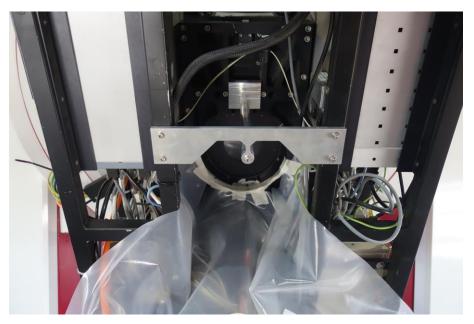
Installation pompe et débitmètre Kalao

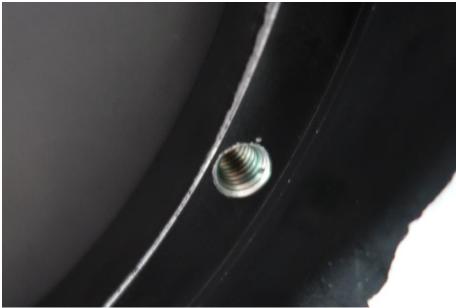
Rangement et inventaire Bodega

Rangement ancien matériel LIDA

Lu 21

Test d'équilibrage du télescope (voir valeurs en fin de document)


Etiquetage des positions angulaires du télescope au niveau de la règle azimut


Remontage des capots azimut

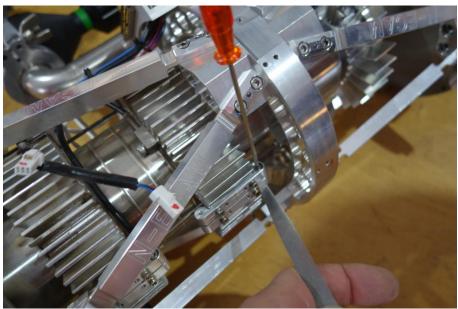
Démontage et pompage NECAM

Pose des helicoils pour NECAM

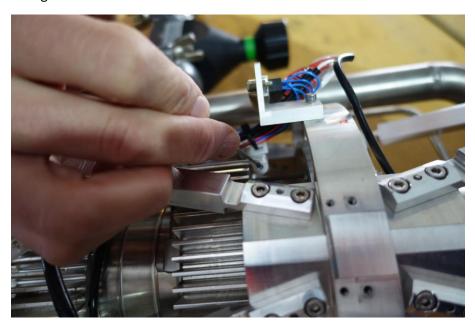
Contrôle de NECAM : radiateurs serrés -> OK. Sondes de température serrées -> OK
Nettoyage du hublot

Remontage de NECAM et régénération de la sorption pump (pompage et chauffage à 50°)

Ma 22

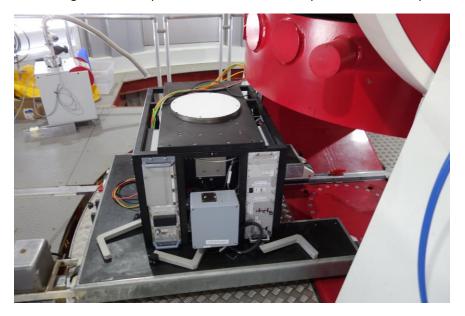

Après une discussion avec Ludo, il est décidé de rouvrir NECAM pour un contrôle du serrage des radiateurs

Démontage NECAM


Contrôle de l'équilibrage sans NECAM. Voir historique à la fin du document

Serrage des radiateurs avec gauge d'épaisseur : 0,8 mm entre les parties des radiateurs du compresseur et 1,9 entre les parties du radiateur de la tête. Il se trouve que le serrage a été augmenté

Collage des vis des radiateurs



Nettoyage des ventilateurs

Remontage NECAM


Démontage du châssis pour une maintenance simple. Une nouvelle procédure est établie et documentée

Nettoyage du hublot d'entrée

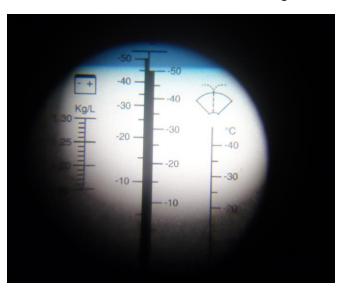
Nettoyage des 12 filtres de la roue

Contrôle et petit nettoyage du mécanisme du shutter, car seulement quelques particules de laiton étaient présentes autour des pièces mobiles

Remontage terminé à 16h45

Début du pompage à 17h00

Mise en froid à 18h00


Télescope prêt pour observation à 21h00

Me 23

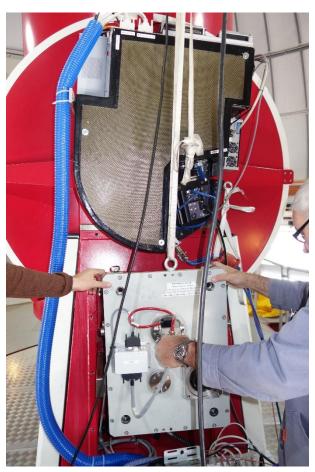
Schwämmle : Contrôle du niveau du mélange eau/glycole,Propylène, au niveau de l'agrégat : proche du max

Schwämmle : Contrôle de la densité du mélange :

-47°C -> OK

Schwämmle : Nettoyage du sol et de l'agrégat

Groupe des pompes : nettoyage + relevé du niveau d'huile = 65/150


Groupe des pompes : filtres remplacés en 2021 -> OK

Pompe Kalao: inversion du sens du flux

REM/RPM : remplacé en novembre 2022 -> OK

Nettoyage et graissage de la couronne en élévation

<u>Je 24</u> Grand démontage et graissage du réducteur en élévation

Mise à jour de la procédure par rapport à KALAO

<u>Ve 25</u> Hydraulique Contrôle/gonflage des accumulateurs

Procédure grand démontage réducteur élévation avec KALAO

Rangement et inventaire armoires machines et outillage Bodega

<u>Sa 26</u>

Rangement et inventaire des armoires et layettes de la Bodega

Nettoyage

Documentation

Di 27

Rangement, nettoyage de la station

Visite NIRPS

Réparation de la Webcam extérieure

<u>Lu 28</u>

Retour

Historique de l'équilibrage du télescope

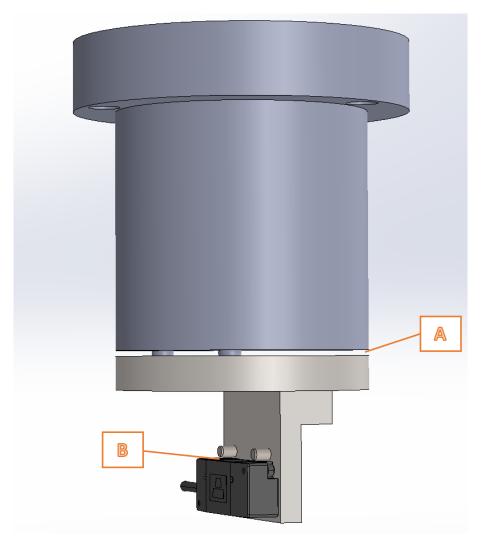
Les valeurs de couple doivent être comprise entre 277 et 630 Nm

22.11.2022 20:52 Même config. qu'en début de mission				
Elevation [d]	Couple [Nm]	Deviation [Nm]	Minimum	Maximum
90	202	14.317299	180	236.24927
87	94	20.87656	45	146.24928
84	115	14.058695	90	146.24928
81	139	14.246071	101.24928	191.24927
78	159	12.995727	135	191.24927
75	185	14.623183	157.5	213.75073
72	203	16.324589	168.75072	247.5
69	228	8.7254486	213.75073	247.5
66	238	15.998712	213.75073	281.24927
63	270	9.4094019	247.5	303.75073
60	295	14.625079	270	326.24927
57	316	14.115755	292.5	360
54	326	8.2394943	315	348.75073
51	342	12.166903	315	371.24927
48	360	7.9514165	337.5	371.24927
45	373	9.8999538	348.75073	393.75073
42	388	9.6097069	360	405
39	405	15.903453	371.24927	450
36	410	10.848901	371.24927	438.75073
33	419	10.613247	405	461.24927
30	429	15.7501	393.75073	461.24927
27	442	9.1698179	416.24927	461.24927
24	444	9.0669727	427.5	472.5
21	457	10.658246	438.75073	495
18	453	7.5464139	427.5	472.5
15	594	14.863619	562.5	630

22.11.2022 20:45 avec NECAM, 1 contrepoids enlevé à l'avant				
Elevation[d]	Couple[Nm]	Deviation[Nm]	Minimum	Maximum
90	172	12.448247	146.24928	202.5
87	206435	331026.06	0	737268.75
84	88487	239575.55	0	737268.75
81	32	14.583381	0	56.249283
78	45	14.022232	11.24928	78.750717
75	57	8.7865009	33.750717	67.5
72	69	9.882412	45	90
69	86	22.973061	33.750717	135
66	91	12.454332	67.5	123.75072
63	103	22.04528	67.5	157.5
60	119	16.700262	90	168.75072
57	132	17.107283	101.24928	191.24927
54	149	20.03017	101.24928	180
51	154	16.771261	123.75072	202.5
48	161	10.284009	135	202.5
45	169	9.503458	146.24928	191.24927
42	180	11.213571	146.24928	202.5
39	193	9.8821373	157.5	213.75073
36	194	13.011223	168.75072	225
33	197	23.615288	157.5	247.5
30	204	10.311038	180	236.24927
27	211	15.750119	168.75072	258.75073
24	217	11.569316	191.24927	247.5
21	218	12.559568	180	247.5
18	213	11.99291	191.24927	258.75073
15	387	11.043671	360	405

22.11.2022 11:33 sans NECAM, 1 contrepoids enlevé à l'avant				
Elevation [d]	Couple [Nm]	Deviation [Nm]	Minimum	Maximum
90	163	16.724342	123.75072	191.24927
87	73	17.746563	45	112.5
84	91	17.188482	56.249283	135
81	124	15.253603	90	157.5
78	150	18.521261	112.5	180
75	183	14.237157	157.5	213.75073
72	206	13.011353	180	236.24927
69	241	17.739298	213.75073	281.24927
66	263	13.52992	236.24927	292.5
63	295	17.070547	247.5	326.24927
60	317	14.196198	292.5	360
57	345	16.843502	315	382.5
54	370	13.656636	337.5	393.75073
51	386	16.951424	348.75073	427.5
48	414	23.955856	371.24927	483.75073
45	429	17.237249	382.5	472.5
42	441	15.308195	405	472.5
39	464	16.875038	427.5	517.5
36	485	16.891447	450	517.5
33	504	15.537909	472.5	540
30	510	14.858614	472.5	540
27	533	14.079949	506.24927	562.5
24	532	16.319897	506.24927	573.75073
21	555	18.674891	517.5	596.24927
18	547	16.601223	517.5	585
15	700	9.1563559	686.24927	731.24933

22.11.2022 11:20 Sans NECAM				
Elevation [d]	Couple [Nm]	Deviation [Nm]	Minimum	Maximum
90	226	18.555374	191.24927	258.75073
87	114	18.280453	78.750717	146.24928
84	145	19.518091	101.24928	191.24927
81	182	18.319214	146.24928	213.75073
78	224	17.994226	180	258.75073
75	264	17.317663	225	303.75073
72	301	17.383329	258.75073	337.5
69	348	16.374084	315	382.5
66	381	18.335821	337.5	416.24927
63	411	14.960295	382.5	438.75073
60	442	19.6717	405	472.5
57	475	18.723785	438.75073	517.5
54	502	18.4774	461.24927	540
51	537	19.166019	506.24927	585
48	552	18.313787	506.24927	585
45	589	19.600698	540	641.24927
42	615	14.625123	585	652.5
39	641	17.643442	607.5	675
36	653	17.024523	618.75073	686.24927
33	679	14.951822	641.24927	708.75073
30	692	18.312355	652.5	742.5
27	716	15.195218	675	742.5
24	725	17.313189	686.24927	765
21	741	13.280961	720	776.24933
18	745	17.02442	708.75073	787.5
15	900	23.209915	843.75067	956.24933


21.11.2022 08:33				
Elevation [d]	Couple [Nm]	Deviation [Nm]	Minimum	Maximum
90	219	13.539166	191.24927	247.5
87	78	16.14526	45	123.75072
84	96	19.626572	56.249283	146.24928
81	117	18.14012	78.750717	157.5
78	136	15.466008	101.24928	168.75072
75	170	14.406998	146.24928	191.24927
72	183	17.752216	146.24928	225
69	209	15.093596	157.5	236.24927
66	226	18.035076	191.24927	258.75073
63	250	18.252789	213.75073	292.5
60	265	18.926638	213.75073	303.75073
57	287	19.512959	236.24927	326.24927
54	306	20.161057	258.75073	348.75073
51	318	19.903299	281.24927	371.24927
48	334	19.647396	292.5	393.75073
45	353	17.295628	315	382.5
42	362	18.180506	326.24927	405
39	379	18.588087	337.5	427.5
36	391	18.873207	360	427.5
33	398	18.029512	360	438.75073
30	411	17.148764	360	450
27	423	17.843245	382.5	461.24927
24	420	17.295782	382.5	450
21	431	17.557289	393.75073	472.5
18	428	20.176226	371.24927	461.24927
15	570	14.058571	540	607.5

Mission aluminure 2021. KALAO pas encore installé

	12.12.2021 18:52			
Elevation [d]	Couple [Nm]	Deviation [Nm]	Minimum	Maximum
90	357	18.863770	315.00000	393.75073
87	136	11.168402	112.50000	157.50000
84	156	13.089027	123.75072	180.00000
81	173	15.775551	135.00000	213.75073
78	190	21.340549	146.24928	281.24927
75	197	18.429407	157.50000	236.24927
72	215	13.935470	180.00000	247.50000
69	227	14.892426	191.24927	258.75073
66	229	14.245994	202.50000	270.00000
63	249	13.628850	225.00000	281.24927
60	254	12.324020	236.24927	281.24927
57	265	15.108352	225.00000	292.50000
54	274	14.422715	236.24927	303.75073
51	287	15.750140	247.50000	326.24927
48	289	18.588085	247.50000	326.24927
45	301	19.402233	258.75073	348.75073
42	299	16.050934	270.00000	326.24927
39	317	73.323769	202.50000	438.75073
36	308	40.816723	225.00000	382.50000
33	304	44.910400	202.50000	382.50000
30	300	29.768059	236.24927	348.75073
27	304	39.439255	213.75073	360.00000
24	294	43.553097	225.00000	371.24927
21	309	40.201355	225.00000	393.75073
18	289	16.038403	258.75073	315.00000
15	282	17.574621	236.24927	315.00000

Rapport d'alignement des têtes de lecture

Calage et alignement

A = tilt de l'ensemble tête de lecture

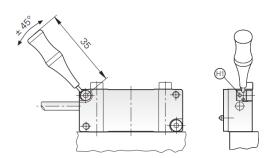
B = calage entre la tête et les goupilles

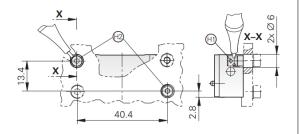
Numéro de tête	А	В
TLA1	2,2 mm	0,30 mm
TLA2	2,3 mm	0,30 mm
TLA3	1,8 mm	0,30 mm
TLA4	2,1 mm	0,35 mm

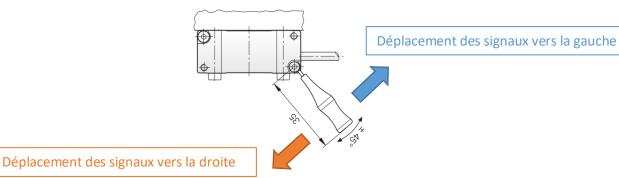
Mounting Information
Hinweise zur Montage
Remarques sur le montage
Avvertenze per il montaggio
Indicaciones para el montaje

Efficace pour le réglage des "TOP 0"

Leave space for fine adjustment!


Auf Freiraum für Feinjustage achten!


Prévoir une espace libre pour le réglage fin!


Prestare attenzione alla libertà di movimento per la taratura di precisione!

¡Prever espacio libre para el ajuste fino!

- Holes required for fine adjustment
 Erforderliche Bohrungen zur Feinjustierung
 Perçages nécessaires pour réglage fin
 Fori indispensabili per la taratura di precisione
 Taladros necesarios para el ajuste fino

Résultat

TLA1

TLA2

TLA3

TLA4

