Montage- und Einschaltanleitung | Mounting and switch-on instructions

i500

Inverter i550-Cabinet 3 ... 22 kW
i500

Inverter i550-Cabinet 3 ... 22 kW

Contents

About this document 43
Notations and conventions. 43
Safety instructions 44
Basic safety measures. 44
Residual hazards 45
Application as directed 46
Product information 47
Equipment 47
The name of the product 48
Mounting/ installation 49
Mechanical installation 49
Dimensions 49
3 kW ... 5.5 kW 49
7.5 kW ... 11 kW 50
15 kW ... 22 kW 51
Electrical installation 52
Important notes 52
3-phase mains connection 230/240 V 53
Connection plan 53
Fusing and terminal data 54
3-phase mains connection 400 V 55
Connection plan 55
Fusing and terminal data 56
Connection to the IT system. 58
Control connections 58
CANopen 59
Modbus RTU 60
PROFIBUS 61
EtherCAT 62
EtherNet/IP 63
PROFINET 64
Connection of the safety module 65
Commissioning 68
Important notes 68
Initital switch-on 69
Technical data 71
Standards and operating conditions 71
Conformities/approvals 71
Protection of persons and device protection, 71
EMC data 71
Motor connection 72
Environmental conditions 72
Electrical supply conditions 72
3-phase mains connection 230/240 V. 73
Rated data 73
3-phase mains connection 400 V 74
Rated data 74

About this document

WARNING!

Read this documentation thoroughly before carrying out the installation and commissioning.

- Please observe the safety instructions!

Information and tools with regard to the Lenze products can be found on the Internet: http://www.lenze.com \rightarrow Download

Notations and conventions

This document uses the following conventions to distinguish different types of information:

Numbers		
Decimal separator	Point	In general, the decimal point is used. Example: 1234.56
Warning		
UL warning	UL	Are used in English and French.
UR warning	UR	
Text		
Programs	" «	Software Example: »Engineer«, »EASY Starter«
Icons		
Page reference	\square	Reference to another page with additional information Example: 16 = see page 16
Documentation reference	(1)	Reference to another documentation with additional information Example: (:) EDKxxx = see documentation EDKxxx

Layout of the safety instructions

DANGER!

This note refers to an imminent danger which, if not avoided, may result in death or serious injury.

\. WARNING!

This note refers to a danger which, if not avoided, may result in death or serious injury.

This note refers to a danger which, if not avoided, may result in minor or moderate injury.

NOTICE

This note refers to a danger which, if not avoided, may result in damage to material assets.

Safety instructions

Disregarding the following basic safety measures and safety information may lead to severe personal injury and damage to property!
Please observe the specific safety information in the other sections!

Basic safety measures

- Only use the product as directed.
- Never commission the product in the event of visible damage.
- The product must never be technically modified.
- Never commission the product before assembly has been completed.
- The product must never be operated without required covers.

The product must only be used by qualified personnel. IEC 60364 or CENELEC HD 384define the skills of these persons:

- They are familiar with installing, mounting, commissioning, and operating the product.
- They have the corresponding qualifications for their work.
- They know and can apply all regulations for the prevention of accidents, directives, and laws applicable at the place of use.

The procedural notes and circuit details described in this document are only proposals. It is up to the user to check whether they can be adapted to the particular applications. Lenze does not take any responsibility for the suitability of the procedures and circuit proposals described.

Device protection

- Connect/disconnect all pluggable terminals only in deenergised condition.
- Only change wiring on connections in deenergised condition.
- Only remove the product from the installation, e.g. from the rear panel of the control cabinet, in deenergised condition.
- The maximum test voltage for insulation tests between 24 V control potential and PE must not exceed 110 V DC (EN 61800-5-1).

Observe all specifications of the corresponding documentation supplied. This is the precondition for safe and trouble-free operation and for obtaining the product features specified.

Residual hazards

Even if notes given are taken into consideration and protective measures are implemented, the occurrence of residual risks cannot be fully prevented.
The user must take the residual hazards mentioned into consideration in the risk assessment for his/her machine/system.
If the above is disregarded, this can lead to severe injuries to persons and damage to property!

Product

Observe the warning labels on the product!

Icon	Description
	Electrostatic sensitive devices: Before working on the product, the staff must ensure to be free of electrostatic charge!
	Dangerous electrical voltage Before working on the product, check if no voltage is applied to the power terminals! After mains disconnection, the power terminals carry the hazardous electrical voltage given on the product!
High leakage current:	
Carry out fixed installation and PE connection in compliance with EN 61800-5-1 or EN 60204-1!	

Motor protection

With some settings of the inverter, the connected motor can be overheated.

- E. g. by longer operation of self-ventilated motors at low speed.
- E. g. by longer operation of the DC-injection brake.

Protection of the machine/system

Drives can reach dangerous overspeeds.

- E. g. by setting high output frequencies in connection with motors and machines not suitable for this purpose.
- The inverters do not provide protection against such operating conditions. For this purpose, use additional components.

Switch contactors in the motor cable only if the controller is inhibited.

- Switching while the inverter is enabled is only permissible if no monitoring functions are activated.

Motor

If there is a short circuit of two power transistors, a residual movement of up to $180^{\circ} /$ number of pole pairs can occur at the motor! (For 4-pole motor: residual movement max. $180^{\circ} / 2=90^{\circ}$).

Application as directed

- The product must only be operated under the operating conditions prescribed in this documentation.
- The product meets the protection requirements of 2014/35/EU: Low-Voltage Directive.
- The product is not a machine in terms of 2006/42/EC: Machinery Directive.
- Commissioning or starting the operation as directed of a machine with the product is not permitted until it has been ensured that the machine meets the regulations of the EC Directive 2006/42/EC: Machinery Directive; observe EN 60204-1.
- Commissioning or starting the operation as directed is only allowed when there is compliance with the EMC Directive 2014/30/EU.
- The harmonised standard EN $61800-5-1$ is used for the inverters.
- The product is not a household appliance, but is only designed as component for commercial or professional use in terms of EN 61000-3-2.
- The product can be used according to the technical data if drive systems have to comply with categories according to EN 61800-3.
In residential areas, the product may cause EMC interferences. The operator is responsible for taking interference suppression measures.
- The product must only be actuated with motors that are suitable for the operation with inverters.
- Lenze L-force motors meet the requirements
- Exception: m240 motors are designed for mains operation only.

Product information

Equipment

Product information
The name of the product

The name of the product

In tables, the first 9 digits of the corresponding product code are used to identify the products:

Product code

Example:

Product code	Meaning
I55AE311F1A01000KS	Inverter i550 Cabinet, 11 kW, 3-phase, 400 V/480 V STO safety function, IP20, integrated RFI filter; 50 Hz variant Standard I/O with EtherCAT network

Mounting/ installation

Mechanical installation

Dimensions

3 kW ... 5.5 kW
The dimensions in mm apply to:

3 kW	4 kW	5.5 kW
	I55AE240D	I55AE255D
I55AE230F	I55AE240F	I55AE255F

Mounting/ installation
Mechanical installation
Dimensions

7.5 kW ... 11 kW

The dimensions in mm apply to:

7.5 kW	11 kW
155AE275F	$155 A E 311 \mathrm{~F}$

8800296

15 kW ... 22 kW

The dimensions in mm apply to:

15 kW
I55AE315F
18.5 kW

I55AE318F

22 kW
I55AE322F

8800297

Mounting/ installation
Electrical installation
Important notes

Electrical installation

Important notes

4. DANGER!

Dangerous electrical voltage
Possible consequence: death or severe injuries

- All work on the inverter must only be carried out in the deenergised state.
- After switching off the mains voltage, wait for at least 3 minutes before you start working.

A danger!

Dangerous electrical voltage
The leakage current against earth (PE) is $>3.5 \mathrm{~mA} \mathrm{AC}$ or $>10 \mathrm{~mA} \mathrm{DC}$.
Possible consequences: Death or severe injuries when touching the device in the event of an error.

- Implement the measures required in EN 61800-5-1, especially:
- Fixed installation
- The PE connection must comply with the standards (PE conductor diameter $\geq 10 \mathrm{~mm}^{2}$ or use a double PE conductor)

3-phase mains connection 230/240 V

i15xAExxxD inverters do not have an integrated EMC filter in the AC mains supply. In order to comply with the EMC requirements according to EN 61800-3, an external EMC filter according to IEC EN 60939 has to be used.
The user must prove that the EN 61800-3 requirements for conformity are fulfilled.

Connection plan

The connection plan is valid for the $15 \times A E x x x C$ inverters.

Fig. 3: Wiring example

S1	Start/Stop
Fx	Fuses

[^0]
Mounting/ installation

Electrical installation
3 -phase mains connection 230/240 V

Fusing and terminal data

Mains connection			
Inverter		I55AE240C	I55AE255C
Connection		X100	
Connection type	Screw terminal		
Min. cable cross-section	mm^{2}	1.5	
Max. cable cross-section	mm^{2}	6	
Stripping length	mm	9	
Tightening torque	Nm	0.5	
Required tool		0.6×3.5	
Connection		PE	
Connection type		PE screw	
Min. cable cross-section	mm^{2}	1.5	
Max. cable cross-section	mm^{2}	6	
Stripping length	mm	10	
Tightening torque	Nm	1.2	
Required tool		0.8×5.5	

Motor connection			
Inverter		I55AE240C	I55AE255C
Connection		X105	
Connection type	Screw terminal		
Min. cable cross-section	mm^{2}	1.5	
Max. cable cross-section	mm^{2}	6	
Stripping length	mm	9	
Tightening torque	Nm	0.5	
Required tool		0.6×3.5	
Connection		PE	
Connection type		PE screw	
Min. cable cross-section	mm^{2}	1.5	
Max. cable cross-section	mm^{2}	6	
Stripping length	mm	10	
Tightening torque	Nm	1.2	
Required tool		0.8×5.5	

3-phase mains connection 400 V

Connection plan

The wiring diagram is valid for $15 \times A E x x x F$ inverters.

Fig. 4: Wiring example

S1 Start/Stop
Fx Fuses

Q1 Mains contactor
--- Dashed line = options

Mounting/ installation

Electrical installation
3 -phase mains connection 400 V

Fusing and terminal data

Fuse data								
Inverter		I55AE230F	I55AE240F	I55AE255F	I55AE275F	I55AE311F	I55AE315F	155AE318F
Cable installation in compliance with		EN 60204-1						
Laying system		B2						
operation		without mains choke						
Fuse								
Characteristics		gG/gL or gRL					gR	
Max. rated current	A	25	25	25	32	32	63	63
Circuit breaker								
Characteristics		B						
Max. rated current	A	25	25	25	32	32	63	63
operation		with mains choke						
Fuse								
Characteristics		gG/gL or gRL					gR	
Max. rated current	A	25	25	25	32	32	63	63
Circuit breaker		B						
Characteristics								
Max. rated current	A	25	25	25	32	32	63	63
Earth-leakage circuit breaker								
3-phase mains connection		$\geq 300 \mathrm{~mA}$, type B						

Mains connection								
Inverter		155AE230F	155AE240F	I55AE255F	I55AE275F	I55AE311F	155AE315F	155AE318F
Connection		X100						
Connection type		Screw terminal						
Min. cable cross-section	mm^{2}	1.5						
Max. cable cross-section	mm^{2}	6			16		35	
Stripping length	mm	9			11		18	
Tightening torque	Nm	0.5			1.2		3.8	
Required tool		0.6×3.5			0.8×4.0		0.8×5.5	
Connection		PE						
Connection type		PE screw						
Min. cable cross-section	mm^{2}	1.5					4	
Max. cable cross-section	mm^{2}	6			16		25	
Stripping length	mm	10			11		16	
Tightening torque	Nm	1.2			3.4		4	
Required tool		0.8×5.5			PZ2			

Mains connection		
Inverter		I55AE322F
Connection		X100
Connection type	Screw terminal	
Min. cable cross-section	mm^{2}	1.5
Max. cable cross-section	mm^{2}	35
Stripping length	mm	18
Tightening torque	Nm	3.8
Required tool		0.8×5.5
Connection		PE
Connection type		PE screw
Min. cable cross-section	mm^{2}	4
Max. cable cross-section	mm^{2}	25
Stripping length	mm	Nm
Tightening torque	Nm	16
Required tool		4

Motor connection								
Inverter		I55AE230F	I55AE240F	I55AE255F	I55AE275F	I55AE311F	I55AE315F	155AE318F
Connection		X105						
Connection type		Screw terminal						
Min. cable cross-section	mm^{2}	1.5						
Max. cable cross-section	mm^{2}	6			16		35	
Stripping length	mm	9			11		18	
Tightening torque	Nm	0.5			1.2		3.8	
Required tool		0.6×3.5			0.8×4.0		0.8×5.5	
Connection		PE						
Connection type		PE screw						
Min. cable cross-section	mm^{2}	1.5					4	
Max. cable cross-section	mm^{2}	6			16		25	
Stripping length	mm	10			11		16	
Tightening torque	Nm	1.2			3.4		4	
Required tool		0.8×5.5			PZ2			

Mounting/ installation
Electrical installation
Connection to the IT system

Motor connection		
Inverter		I55AE322F
Connection		X105
Connection type	Screw terminal	
Min. cable cross-section	mm^{2}	1.5
Max. cable cross-section	mm^{2}	35
Stripping length	mm	18
Tightening torque	Nm	3.8
Required tool		0.8×5.5
Connection		PE
Connection type		PE screw
Min. cable cross-section	mm^{2}	4
Max. cable cross-section	mm^{2}	25
Stripping length	mm	Nm
Tightening torque	Nm	16
Required tool		4

Connection to the IT system

NOTICE

Internal components have earth/ground potential if the IT screws are not removed.
Consequence: the monitoring functions of the IT system respond.

- Before connection to an IT system be absolutely sure to remove the IT screws.

Control connections

Terminal description		Relay output	PTC input	Control terminals
Connection		X9	X109	X3
Connection type		pluggable screw terminal	pluggable screw terminal	pluggable spring terminal
Min. cable cross-section	mm^{2}	0.5	0.5	0.5
Max. cable cross-section	mm^{2}	1.5	1.5	1.5
Stripping length	mm	6	6	9
Tightening torque	Nm	0.2	0.2	-
Required tool		0.4×2.5	0.4×2.5	0.4×2.5

CANopen

Typical topologies

Terminal description		CANopen
Connection		X216
Connection type		pluggable spring terminal
Min. cable cross-section	mm^{2}	0.5
Max. cable cross-section	mm^{2}	2.5
Stripping length	mm	10
Tightening torque	Nm	-
Required tool		0.4×2.5

Basic network settings

Use the DIP switch to set the node address and baud rate and to activate the integrated bus terminating resistor.

Bus termination	Baud rate					CAN node address						
R	d	c	b	a		64	32	16	8	4	2	1
OFF	OFF	ON	OFF	ON	20 kbps	OFF						
Inactive	OFF	OFF	ON	ON	50 kbps	Value from parameter						
ON	OFF	OFF	ON	OFF	125 kbps	Node address - example:						
Active	OFF	OFF	OFF	ON	250 kbps	OFF	OFF	ON	OFF	ON	ON	ON
	OFF	OFF	OFF	OFF	Value from parameter (500 kbps)	Node address $=16+4+2+1=23$						
	OFF	ON	OFF	OFF	1 Mbps							
	All other combinations				Value from parameter (500 kbps)							

Bold print $=$ default setting
The network must be terminated with a 120Ω resistor at the physically first and last node.
Set the "R" switch to ON at these nodes.

Mounting/ installation
Electrical installation
Modbus RTU

Modbus RTU

Typical topologies

Terminal description		Modbus
Connection		X216
Connection type		pluggable spring terminal
Min. cable cross-section	mm^{2}	0.5
Max. cable cross-section	mm^{2}	2.5
Stripping length	mm	10
Tightening torque	Nm	-
Required tool		0.4×2.5

Basic network settings

Use the DIP switch to set the node address and baud rate and to activate the integrated bus terminating resistor.

Bus termination		Baud rate	Parity	Modbus node address							
R	c	b	a	128	64	32	16	8	4	2	1
OFF	n.c.	OFF									
Inactive		Automatic detection	Automatic detection	Value from parameter							
ON		ON	ON	Node address - example:							
Active		Value from parameter	Value from parameter	OFF	OFF	OFF	ON	OFF	ON	ON	ON
				Node address $=16+4+2+1=23$ Node address > 247: value from parameter							

Bold print $=$ default setting
The network must be terminated with a 120Ω resistor at the physically first and last node.
Set the "R" switch to ON at these nodes.

PROFIBUS

Typical topologies

Sub D socket 9-pin - X226

View	Pin	Assignment	Description
	1	Shield	Additional shield connection
	2	n.c.	
	3	RxD/TxD-P	Data line-B (received data/transmitted data +)
	4	RTS	Request To Send (received data/transmitted data, no differential signal)
	5	M5V2	Reference potential (bus terminating resistor -)
	6	P5V2	5 V DC / 30 mA (bus terminating resistor +, OLM, OLP)
	7	n.c.	
	8	RxD/TxD-N	Data line-A (received data/transmitted data -)
	9	n.c.	

Basic network settings

Use the DIP switch to set the station address.
The baud rate is detected automatically.

PROFIBUS station address						
64	32	16	8	4	2	1
OFF						
Value from parameter						
Station address - example:						
OFF	OFF	ON	OFF	ON	ON	ON
Station address $=16+4+2+1=23$ Do not set station address $=126$ and station address $=127$. These station addresses are invalid.						

Bold print $=$ default setting
The network must be terminated with a resistor at the physically first and last node.
Activate the bus terminating resistor at these nodes in the bus connection plug.

Mounting/ installation
Electrical installation
EtherCAT

EtherCAT

Typical topologies

M	Master
SD	Slave Device

Bus-related information		EtherCAT	
Name		Ethernet 100 Mbps, full duplex	
Communication medium	Connection of the inverter to an EtherCAT network		
Use		RJ45	
Connection system		2 LEDs	
Status display	In: X246 Out: X247		
Connection designation			

Basic network settings

The rotary encoder switch allows you to set an EtherCAT identifier.

Setting	Identifier
0×00	Value from parameter
$0 \times 01 \ldots 0 \times F F$	Switch position

EtherNet/IP

Typical topologies

S Scanner
A Adapter

Bus-related information			
EtherNet/IP			
Name		Ethernet 10 Mbps, 100 Mbps, half duplex, full duplex	
Usemunication medium		Connection of the inverter to an EtherNet/IP network	
Connection system		RJ45	
Status display		2 LEDs	
Connection designation		X266, X267	

Basic network settings

The rotary encoder switch allows you to set the last byteof the IP address.

Setting	Value of last byte	Resulting IP address
0×00	Value from parameter	Value from parameter
$0 \times 01 \ldots 0 \times F E$	Switch position	$192.168 .124 .<$ switch position>
0xFF	Default setting	192.168 .124 .16

Mounting/ installation
Electrical installation
PROFINET

PROFINET

Typical topologies

C	I/O controller	SW	Switch SCALANCE (MRP capable)
D	I/O device	R	Redundant domain

Bus-related information		PROFINET RT	
Name		Ethernet 100 Mbps, full duplex	
Communication medium	Connection of the inverter to a PRO- FINET network		
Use		RJ45	
Connection system		2 LEDs	
Status display	X256, X257		
Connection designation			

The rotary encoder switch has no function.

Connection of the safety module

^ DANGER!

Improper installation of the safety engineering system can cause an uncontrolled starting action of the drives.
Possible consequences: Death or severe injuries

- Safety engineering systems may only be installed and commissioned by qualified and skilled personnel.
- All control components (switches, relays, PLC, ...) and the control cabinet must comply with the requirements of the EN ISO 13849-1 and the EN ISO 13849-2.
- Switches, relays with at least IP54 enclosure.
- Control cabinet with at least IP54 enclosure.
- It is essential to use insulated wire end ferrules for wiring.
- All safety relevant cables outside the control cabinet must be protected, e.g. by means of a cable duct
- Ensure that no short circuits can occur according to the specifications of the EN ISO 13849-2.
- All further requirements and measures can be obtained from the EN ISO 13849-1 and the EN ISO 13849-2.
- If an external force acts upon the drive axes, additional brakes are required. Please observe that hanging loads are subject to the force of gravity!
- The user has to ensure that the inverter will only be used in its intended application within the specified environmental conditions. This is the only way to comply with the declared safety-related characteristics.

4 DANGER!

With the "Safe torque off" (STO) function, no "emergency stop" in terms -EN 60204-1 can be executed without additional measures. There is no isolation between the motor and inverter, no service switch or maintenance switch!
Possible consequence: death or severe injuries

- "Emergency stop" requires electrical isolation, e.g. by a central mains contactor.

4 dANGER!

Automatic restart if the request of the safety function is deactivated.
Possible consequences: Death or severe injuries

- You must provide external measures according to EN ISO 13849-1 which ensure that the drive only restarts after a confirmation.

NOTICE

Overvoltage
Destruction of the safety component

- The maximum voltage (maximum rated) at the safety inputs is 32 VDC . The user must make provisions to avoid that this voltage is exceeded.

Mounting/ installation
Electrical installation
Connection of the safety module

Passive sensors

Active sensors

X1	Specification	Unit	min.	typ.	max.
SIA, SIB	LOW signal	V	-3	0	+5
	HIGH signal	V	+15	+24	+30
	Running time	ms		3	
	Input current SIA	mA		10	14
	Input current SIB	mA		7	12
	Input peak current	mA		100	
	Tolerated test pulse	ms			1
	Switch-off time	ms		50	
	Permissible distance of the test pulses	ms	10		
GS	Reference potential for SIA and SIB				

Commissioning
Important notes

Commissioning

Important notes

WARNING!

Incorrect wiring can cause unexpected states during the commissioning phase.
Possible consequence: death, severe injuries or damage to property
Check the following before switching on the mains voltage:

- Is the wiring complete and correct?
- Are there no short circuits and earth faults?
- Is the motor circuit configuration (star/delta) adapted to the output voltage of the inverter?
- Is the motor connected in-phase (direction of rotation)?
- Does the "emergency stop" function of the entire plant operate correctly?

\. WARNING!

Incorrect settings during commissioning may cause unexpected and dangerous motor and system movements.
Possible consequence: death, severe injuries or damage to property

- Clear hazardous area.
- Observe safety instructions and safety clearances.

Initital switch-on

Target: achieve rotation of the motor connected to the inverter as quickly as possible.
Requirements:

- The connected motor matches the inverter in terms of power.
- The parameter settings comply with the delivery status (Lenze setting).

1. Preparation

1. Wiring of power terminals. (Chapter)
2. Wire digital inputs X3/DI1 (start/stop), X3/DI3 (reversal of rotation direction), and X3/DI4 (preset frequency setpoint 20 Hz).
3. Do not connect terminal X3/AI1 (analog setpoint selection) or connect it to GND.

2. Switch on mains and check readiness for operation

1. Switch on mains voltage.

2. Observe LED status displays "RDY" and "ERR" on the front of the inverter:
a) If the blue "RDY" LED is blinking and the red "ERR" LED is off, the inverter is ready for operation. The controller is inhibited.
You can now start the drive.
b) If the red "ERR" LED is lit permanently, a fault is pending.

Eliminate the fault before you carry on with the functional test.

LED status displays

"RDY" LED (blue)	"ERR" LED (red)	Status/meaning
off	off	No supply voltage.
blinking (1 Hz)	off	Safe torque off (STO) active.
	blinking fast (4 Hz)	Safe torque off (STO) active. Warning active.
blinking (2 Hz)	off	Inverter inhibited.
	lit every 1.5 s for a short time	Inverter inhibited, no DC-bus voltage.
	blinking fast (4 Hz)	Inverter inhibited, warning active.
	on	Inverter inhibited, fault active.
on	off	Inverter enabled. \quad The drive rotates according to the set-
	blinking fast (4 Hz)	Inverter enabled, warning active. point specified. $^{\text {l }}$
	blinking (1 Hz)	Inverter enabled, quick stop as response to a fault active.

Commissioning
Initital switch-on

Carrying out the functional test

1. Start drive

1. Start inverter: X3/DI1 = HIGH.
a) If the inverter is equipped with an integrated safety system: X1/SIA $=\mathrm{HIGH}$ and $\mathrm{X} 1 / \mathrm{SIB}=\mathrm{HIGH}$.
2. Activate preset frequency setpoint $1(20 \mathrm{~Hz})$ as speed setpoint: X3/DI4 = HIGH.

The drive rotates with 20 Hz .
3. Optional: activate the function for the reversal of rotation direction.
a) $\mathrm{X} 3 / \mathrm{DI} 3=\mathrm{HIGH}$.

The drive rotates with 20 Hz in the opposite direction.
b) Deactivate the function for the reversal of rotation direction again: X3/DI3 $=$ LOW.

Speed characteristic (example)

2. Stop drive

1. Deactivate preset frequency setpoint 1 again: X3/DI4 $=$ LOW.
2. Stop inverter again: X3/DI1 = LOW.

The functional test is completed.
The commissioning process of the drive solution is described in a separate commissioning instruction which can be found on the Internet in our download area:
http://www.lenze.com \rightarrow Download

Technical data

Standards and operating conditions

Conformities/approvals

Conformities		
CE	2014/35/EU	Low-Voltage Directive
	2014/30/EU	EMC Directive (reference: CE-typical drive system)
EAC	TR TC 004/2011	Eurasian conformity: safety of low voltage equipment
	TP TC 020/2011	Eurasian conformity: electromagnetic compatibility of technical means
RoHS 2	2011/65/EU	Restrictions for the use of specific hazardous materials in electric and electronic devices
Approvals		
UL	UL 61800-5-1	for USA and Canada (requirements of the CSA 22.2 No. 274)
		0.25 kW ... 45 kW (55 kW ... 75 kW in preparation)

Protection of persons and device protection

Degree of protection		
IP20	EN 60529	
Type 1	NEMA 250	Protection against contact
Open type		only in UL-approved systems
Insulation resistance		
Overvoltage category III	EN 61800-5-1	0 ... 2000 m a.m.s.l.
Overvoltage category II		above 2000 m a.m.s.l.
Control circuit isolation		
Safe mains isolation by double/reinforced insulation	EN 61800-5-1	
Protective measures against		
Short circuit		
earth fault		Earth fault strength depends on the operating status
overvoltage		
Motor stalling		
Motor overtemperature		PTC or thermal contact, $\mathrm{I}^{2} \mathrm{xt}$ monitoring
Leakage current		
$>3.5 \mathrm{~mA} \mathrm{AC},>10 \mathrm{~mA} \mathrm{DC}$	EN 61800-5-1	Observe regulations and safety instructions!
Cyclic mains switching		
3 times per minute		Without restrictions
Starting current		
$\leq 3 \times$ rated mains current		

EMC data

Actuation on public supply systems		
Implement measures to limit the radio interference to be expected:		The machine or plant manufacturer is responsible for compliance with the requirements for the machine/plant!
$<1 \mathrm{~kW}$: with mains choke	EN 61000-3-2	
$>1 \mathrm{~kW}$ at mains current $\leq 16 \mathrm{~A}$: without additional measures		
Mains current > 16 A: with mains choke or mains filter, with dimensioning for rated power. Rsce ≥ 120 is to be met.	EN 61000-3-12	RSCE: short-circuit power ratio at the connection point of the machine/plant to the public network.
Noise emission		
Category C1	EN 61800-3	Type-dependent, for motor cable lengths see rated data
Category C2		
Noise immunity		
Meets requirement in compliance with	EN 61800-3	

Technical data
Standards and operating conditions
Motor connection

Motor connection

Requirements to the shielded motor cable		
Capacitance per unit length		
C-core-core/C-core-shield < 75/150 pF / m		$\leq 2.5 \mathrm{~mm}^{2} /$ AWG 14
$\begin{aligned} & \text { C-core-core/C-core-shield < 150/300 } \\ & \mathrm{pF} / \mathrm{m} \end{aligned}$		$\geq 4 \mathrm{~mm}^{2} /$ AWG 12
Electric strength		
Uo/U $=0.6 / 1.0 \mathrm{kV}$		Uo = r.m.s. value external conductor to PE
$\mathrm{U} \geq 600 \mathrm{~V}$	UL	$\mathrm{U}=$ r.m.s. value external conductor/external conductor

Environmental conditions

Energy efficiency		
Class IE2	EN 50598-2	Reference: Lenze setting (switching frequency 8 kHz variable)
Climate		
$1 \mathrm{~K} 3\left(-25 \ldots+60^{\circ} \mathrm{C}\right)$	EN 60721-3-1	Storage
2K3 (-25 ... $+70{ }^{\circ} \mathrm{C}$)	EN 60721-3-2	Transport
$3 \mathrm{~K} 3\left(-10 \ldots+55^{\circ} \mathrm{C}\right)$	EN 60721-3-3	operation
		Operation at a switching frequency of 2 or 4 kHz : above $+45^{\circ} \mathrm{C}$, reduce rated output current by $2.5 \% /{ }^{\circ} \mathrm{C}$
		Operation at a switching frequency of 8 or 16 kHz : above $+40^{\circ} \mathrm{C}$, reduce rated output current by $2.5 \% /{ }^{\circ} \mathrm{C}$
Site altitude		
0 ... 1000 m a.m.s.l.		
1000 ... 4000 m a.m.s.l.		Reduce rated output current by 5 \%/1000 m
Pollution		
Degree of pollution 2	EN 61800-5-1	
Vibration resistance		
Transport		
2M2 (sine, shock)	EN 60721-3-2	
operation		
Amplitude 1 mm	Germanischer Lloyd	$5 \ldots 13.2 \mathrm{~Hz}$
Amplitude 0.075 mm	EN 61800-5-1	$10 . . .57 \mathrm{~Hz}$

Electrical supply conditions

ermissible mains systems	
TT	Voltage to earth/ground: max. 300 V
IN	
	Apply the measures described for IT systems!
	IT systems are not relevant for UL-approved systems

3-phase mains connection 230/240 V

i
15xAExxxD inverters do not have an integrated EMC filter in the AC mains supply.
In order to comply with the EMC requirements according to EN 61800-3, an external EMC filter according to IEC EN 60939 has to be used.
The user must prove that the EN 61800-3 requirements for conformity are fulfilled.

Rated data

The output currents apply to these operating conditions:

- At a switching frequency of 2 kHz or 4 kHz : Max. ambient temperature $45^{\circ} \mathrm{C}$.
- At a switching frequency of 8 kHz or 16 kHz : Max. ambient temperature $40^{\circ} \mathrm{C}$.

Inverter		I55AE240C	155AE255C
Rated power	kW	4	5.5
Mains voltage range		3/PE AC 170 V ... $264 \mathrm{~V}, 45 \mathrm{~Hz}$... 65 Hz	
Rated mains current			
without mains choke	A	20.6	28.8
with mains choke	A	15.7	21.9
Apparent output power	kVA	6.4	8.7
Output current			
2 kHz	A	16.5	23
4 kHz	A	16.5	23
8 kHz	A	16.5	23
16 kHz	A	11	15.3
Power loss			
4 kHz	W	115	175
8 kHz	W	130	195
at controller inhibit	W	6	6
Overcurrent cycle 180 s			
Max. output current	A	24.8	34.5
Overload time	s	60	60
Recovery time	S	120	120
Max. output current during the recovery time	A	12.4	17.3
Overcurrent cycle 15 s			
Max. output current	A	33	46
Overload time	S	3	3
Recovery time	s	12	12
Max. output current during the recovery time	A	12.4	17.3
Brake chopper			
Max. output current	A	26	26
Min. brake resistance	Ω	15	15
Max. motor cable length shielded			
without EMC category	m		
Weight	kg		

Technical data
3-phase mains connection 400 V
Rated data

3-phase mains connection 400 V

Rated data

The output currents apply to these operating conditions:

- At a switching frequency of 2 kHz or 4 kHz : Max. ambient temperature $45^{\circ} \mathrm{C}$.
- At a switching frequency of 8 kHz or 16 kHz : Max. ambient temperature $40^{\circ} \mathrm{C}$.

Inverter		155AE230F	I55AE240F	I55AE255F	I55AE275F	I55AE311F	I55AE315F	I55AE318F
Rated power	kW	3	4	5.5	7.5	11	15	18.5
Mains voltage range		3/PE AC $340 \mathrm{~V} \ldots .528 \mathrm{~V}, 45 \mathrm{~Hz} \ldots 65 \mathrm{~Hz}$						
Rated mains current								
without mains choke	A	9.6	12.5	17.2	20	28.4	38.7	48.4
with mains choke	A	6.9	9	12.4	15.7	22.3	28.8	36
Apparent output power	kVA	4.9	6.4	8.7	11	16	22	27
Output current								
2 kHz	A	7.3	9.5	13	16.5	23.5	32	40
4 kHz	A	7.3	9.5	13	16.5	23.5	32	40
8 kHz	A	7.3	9.5	13	16.5	23.5	32	40
16 kHz	A	4.9	6.3	8.7	11	15.7	21.3	26.6
Power loss								
4 kHz	W	85	110	145	185	260	360	450
8 kHz	W	110	140	190	240	340	460	570
at controller inhibit	W	6	6	6	6	6	18	18
Overcurrent cycle 180 s								
Max. output current	A	11	14.3	19.5	24.8	35	48	60
Overload time	s	60	60	60	60	60	60	60
Recovery time	S	120	120	120	120	120	120	120
Max. output current during the recovery time	A	5.5	7.1	9.8	12.4	17.6	24	30
Overcurrent cycle 15 s								
Max. output current	A	14.6	19	26	33	47	64	80
Overload time	S	3	3	3	3	3	3	3
Recovery time	s	12	12	12	12	12	12	12
Max. output current during the recovery time	A	5.5	7.1	9.8	12.4	17.6	24	30
Brake chopper								
Max. output current	A	9.5	16.6	16.6	29	29	43	52
Min. brake resistance	Ω	82	47	47	27	27	18	15
Max. motor cable length shielded								
without EMC category	m	50			100			
Category C2	m	20						
Weight	kg	2.3			3.7		10.3	

紫 Lenze Drives GmbH
Postfach 1013 52，D－31763 Hameln
Breslauer Straße 3，D－32699 Extertal Germany
HR Lemgo B 6478
（2）$+49515482-0$
息＋495154 82－2800
＠lenze＠lenze．com
（1）www．lenze．com
（3）Lenze Service GmbH
Breslauer Straße 3，D－32699 Extertal Germany
（5） 0080002446877 （ 24 h Helpline）
昷＋495154 82－1112
＠service．de＠lenze．com

S20160801

Lenze

[^0]: Q1 Mains contactor
 --- Dashed line = options

