
Vimba C++ API

Vimba C++ API

Programmer's Manual

V1.2
2013-Aug-28

Allied Vision Technologies GmbH
Taschenweg 2a
D-07646 Stadtroda / Germany

Legal Notice
Trademarks

Unless stated otherwise, all trademarks appearing in this document of Allied Vision Technologies are
brands protected by law.

Warranty

The information provided by Allied Vision Technologies is supplied without any guarantees or warranty
whatsoever, be it specific or implicit. Also excluded are all implicit warranties concerning the
negotiability, the suitability for specific applications or the non-breaking of laws and patents. Even if we
assume that the information supplied to us is accurate, errors and inaccuracy may still occur.

Copyright

All texts, pictures and graphics are protected by copyright and other laws protecting intellectual property.
It is not permitted to copy or modify them for trade use or transfer, nor may they be used on websites.

Allied Vision Technologies GmbH 08/2013

All rights reserved.
Managing Director: Mr. Frank Grube
Tax ID: DE 184383113

Headquarters:

Taschenweg 2a
D-07646 Stadtroda, Germany
Tel.: +49 (0)36428 6770
Fax: +49 (0)36428 677-28
e-mail: info@alliedvisiontec.com

Vimba C++ API - Programmer's Manual

2 / 22

mailto:info@alliedvisiontec.com?subject=AVT1394TL

Contents

Contents
1 Contacting Allied Vision Technologies 5

2 Introduction 6
2.1 Document history . 6
2.2 Conventions used in this manual . 6

2.2.1 Styles . 6
2.2.2 Symbols . 6

3 General aspects of the API 7

4 Module Version 7

5 Module Initialization 7

6 Shared Pointers 8
6.1 General aspects . 8
6.2 Restrictions . 8
6.3 Customizing shared pointer usage . 8

7 List available cameras 10

8 Opening a camera 12

9 Feature Access 13

10 Image Acquisition and Capture 17
10.1 Image Capture . 17
10.2 Image Acquisition . 18

11 Additional configuration: List available interfaces 20

12 Error Codes 21

13 Function reference 22

Vimba C++ API - Programmer's Manual

3 / 22

Listings

Listings
1 Shared Pointer . 8
2 Get Cameras . 10
3 Open Camera . 12
4 Open Camera by IP . 12
5 Acquisition Start . 13
6 Payload Size . 13
7 Streaming . 19
8 Get Interfaces . 20

Vimba C++ API - Programmer's Manual

4 / 22

1 Contacting Allied Vision Technologies

1 Contacting Allied Vision
Technologies

Note • Technical Information
http://www.alliedvisiontec.com

• Support
support@alliedvisiontec.com

Allied Vision Technologies GmbH (Headquarters)
Taschenweg 2a
07646 Stadtroda, Germany
Tel.: +49 36428-677-0
Fax.: +49 36428-677-28
Email: info@alliedvisiontec.com

Allied Vision Technologies Canada Inc.
101-3750 North Fraser Way
Burnaby, BC, V5J 5E9, Canada
Tel: +1 604-875-8855
Fax: +1 604-875-8856
Email: info@alliedvisiontec.com

Allied Vision Technologies Inc.
38 Washington Street
Newburyport, MA 01950, USA
Toll Free number +1 877-USA-1394
Tel.: +1 978-225-2030
Fax: +1 978-225-2029
Email: info@alliedvisiontec.com

Allied Vision Technologies Asia Pte. Ltd.
82 Playfair Road
#07-02 D'Lithium
Singapore 368001
Tel. +65 6634-9027
Fax:+65 6634-9029
Email: info@alliedvisiontec.com

Allied Vision Technologies (Shanghai) Co., Ltd.
2-2109 Hongwell International Plaza
1602# ZhongShanXi Road
Shanghai 200235, China
Tel: +86 (21) 64861133
Fax: +86 (21) 54233670
Email: info@alliedvisiontec.com

Vimba C++ API - Programmer's Manual

5 / 22

http://www.alliedvisiontec.com
mailto:support@alliedvisiontec.com
mailto:info@alliedvisiontec.com
mailto:info@alliedvisiontec.com
mailto:info@alliedvisiontec.com
mailto:info@alliedvisiontec.com
mailto:info@alliedvisiontec.com

2 Introduction

2 Introduction
2.1 Document history

Version Date Changes
1.0 2012-Nov-16 Initial version
1.1 2013-Mar-05 Minor corrections, added info about what functions can be called in which

callback
1.2 2013-Jun-18 Small corrections, layout changes

2.2 Conventions used in this manual

To give this manual an easily understood layout and to emphasize important information, the following
typographical styles and symbols are used:

2.2.1 Styles

Style Function Example
Bold Programs, inputs or highlight-

ing important things
bold

Courier Code listings etc. Input
Upper case Constants CONSTANT

Italics Modes, fields Mode

Parentheses and/or blue Links (Link)

2.2.2 Symbols

Note

This symbol highlights important information.

Caution
This symbol highlights important instructions. You have to follow these instruc-
tions to avoid malfunctions.

www This symbol highlights URLs for further information. The URL itself is shown in
blue.
Example: http://www.alliedvisiontec.com

Vimba C++ API - Programmer's Manual

6 / 22

http://www.alliedvisiontec.com

5 Module Initialization

3 General aspects of the API
AVT Vimba C++ API is an object orientated C++ API. It utilizes different transport layers to connect to the
various camera interfaces (FireWire, Gigabit Ethernet) and is therefore considered generic in terms of
camera interfaces. Vimba API makes intense use of shared pointers to ease object lifetime and memory
allocation. Vimba API relieves the developer of all memory allocations. Vimba API is equipped with a
shared pointer implementation, because some C++ runtime libraries don't provide one. This means it is
your choice which shared pointer implementation you prefer to use. Beside std::shared_ptr and
Vimba's own implementation, the API can be freely configured to use any other shared pointer class such
as boost::shared_ptr or QSharedPointer from the Qt library.

4 Module Version
As new features are introduced to Vimba API, your software remains backwards compatible. Use
VimbaSystem::QueryVersion to check the version number of Vimba C++ API.

5 Module Initialization
The entry point to Vimba API is the VimbaSystem singleton. Use VimbaSystem::GetInstance to
obtain a reference to it. The VimbaSystem object allows both, to control the API's behavior and to query
for interfaces and cameras. Before calling any Vimba API functions (other than
VimbaSystem::GetInstance and VimbaSystem::QueryVersion), the API must be initialized by
calling VimbaSystem::Startup through the singleton. When you are finished with Vimba API, call
VimbaSystem::Shutdown to free resources. These two API functions must always be paired. It is
possible, although not recommended, to call the pair several times within the same program. Successive
calls of VimbaSystem::Startup or VimbaSystem::Shutdown are ignored. Therefore the first
VimbaSystem::Shutdown after a VimbaSystem::Startup will close the API.

Vimba C++ API - Programmer's Manual

7 / 22

6 Shared Pointers

6 Shared Pointers
6.1 General aspects

A shared pointer is an object that wraps any regular pointer variable to control its lifetime. Besides
wrapping the underlying raw pointer, it keeps track of the number of copies of itself. By doing so, it
ensures that it will not release the wrapped raw pointer until its reference count (the number of copies)
has dropped to zero. Though giving away the responsibility for deallocation, the programmer can still
work on the very same objects.

Listing 1: Shared Pointer
1 {
2 // This declares an empty shared pointer that can wrap a pointer of
3 // type Camera
4 CameraPtr sp1;
5

6 // The reset member function tells the shared pointer to
7 // wrap the provided raw pointer
8 // sp1 now has a reference count of 1
9 sp1.reset(new Camera());

10 {
11 // In this new scope we declare another shared pointer
12 CameraPtr sp2;
13

14 // By assigning sp1 to it the reference count of both (!) is set to 2
15 sp2 = sp1;
16 }
17 // When sp2 goes out of scope the reference count drops back to 1
18 }
19 // Now that sp1 has gone out of scope its reference count has dropped
20 // to 0 and it has released the underlying raw pointer on destruction

6.2 Restrictions

Unfortunately, shared pointers (or smart pointers in general) were not part of the C++ standard library
until C++11. For example, the first version of Microsoft's C++ standard library implementation that
supports shared pointers is included in Visual Studio 2010. Due to the aforementioned circumstances,
Vimba C++ API makes heavy use of shared pointers while not relying on a specific implementation. You can
easily replace the shared pointer type that Vimba uses by default with your own. Furthermore, Vimba C++
API comes with its built-in shared pointer type in case your C++ library does not provide one.

6.3 Customizing shared pointer usage

The steps to follow to use a custom shared pointer type in Vimba:

1. Add the define USER_SHARED_POINTER to your compiler settings

2. Add your shared pointer source files to the Vimba C++ API project

Vimba C++ API - Programmer's Manual

8 / 22

6 Shared Pointers

3. Define the macros and typedefs as described in the header UserSharedPointerDefines.h

The define USER_SHARED_POINTER tells Vimba to include a header file named
UserSharedPointerDefines.h in which several typedefs and macros are defined. Table 1 lists these macros
covering the basic functionality that Vimba expects from any shared pointer. Since a shared pointer is a
generic type, it requires a template parameter. That is what the various typedefs are for. For example, the
CameraPtr is just an alias for AVT::VmbAPI::shared_ptr<AVT::VmbAPI::Camera>.

Macro Example Purpose

SP_DECL(T) std::shared_ptr<T> Declares a new shared pointer

SP_SET(sp, rawPtr) sp.reset(rawPtr) Tells an existing shared pointer to
wrap the given raw pointer

SP_RESET(sp) sp.reset() Tells an existing shared pointer to de-
crease its reference count

SP_ISEQUAL(sp1, sp2) (sp1 == sp2) Checks the addresses of the wrapped
raw pointers for equality

SP_ISNULL(sp) (NULL == sp) Checks the address of the wrapped
raw pointer for NULL

SP_ACCESS(sp) sp.get() Returns the wrapped raw pointer

SP_DYN_CAST(sp, T) std::dynamic_pointer_cast<T>(sp) A dynamic cast of the pointer

Table 1: Basic functions of a shared pointer class

After you have completed these steps and recompiled Vimba C++ API, Vimba is ready to use the provided
shared pointer implementation without changing its behavior. Within your own application, you can
employ your shared pointers as usual. Please note that your application and Vimba have to refer to the
very same shared pointer type. If you want your application to substitute its shared pointer type along
with Vimba, feel free to utilize the macros listed in Table 1 in your application as well.

Vimba C++ API - Programmer's Manual

9 / 22

7 List available cameras

7 List available cameras
For a quick start see ListCameras example of the Vimba SDK.

VimbaSystem::GetCameras will enumerate all cameras recognized by the underlying transport layers.
See Listing 2 for an example.

Listing 2: Get Cameras
1 std::string name;
2 CameraPtrVector cameras;
3 VimbaSystem &system = VimbaSystem::GetInstance();
4

5 if (VmbErrorSuccess == system.Startup())
6 {
7 if (VmbErrorSuccess == system.GetCameras(cameras))
8 {
9 for (CameraPtrVector::iterator iter = cameras.begin();

10 cameras.end() != iter;
11 ++iter)
12 {
13 if (VmbErrorSuccess == (*iter)->GetName(name))
14 {
15 std::cout << name << std::endl;
16 }
17 }
18 }
19 }

The Camera class provides the member functions listed in Table 2 to obtain information about a camera.

Function Purpose

VmbErrorType GetID(std::string&) const The unique ID

VmbErrorType GetName(std::string&) const The name

VmbErrorType GetModel(std::string&) const The model name

VmbErrorType GetSerialNumber(std::string&) const The serial number

VmbErrorType GetPermittedAccess(VmbAccessModeType&) const Themode to open the
camera

VmbErrorType GetInterfaceID(std::string&) const The ID of the inter-
face the camera is
connected to

Table 2: Basic functions of Camera class

Static features that do not change throughout the object's lifetime such as ID and Name can be queried
without having to open the camera. To get notified when a camera is detected or disconnected, use
VimbaSystem::RegisterCameraListObserver. The observer to be registered has to implement the
interface ICameraListObserver. This interface declares the member function CameraListChanged.
In your implementation of this function, you can react on cameras being plugged in or out as it will get
called by Vimba API on the according event. Please note that VimbaSystem::Shutdown blocks until all

Vimba C++ API - Programmer's Manual

10 / 22

7 List available cameras

callbacks have finished execution. Below, you find a list of functions that cannot be called within the
callback routine.

• VimbaSystem::Startup
• VimbaSystem::Shutdown
• VimbaSystem::GetCameras
• VimbaSystem::GetCameraByID
• VimbaSystem::RegisterCameraListObserver
• VimbaSystem::UnregisterCameraListObserver
• Feature::SetValue
• Feature::RunCommand

Vimba C++ API - Programmer's Manual

11 / 22

8 Opening a camera

8 Opening a camera
A camera must be opened for control and to capture images. To open a camera, simply call
Camera::Open. If you already know the ID of a camera (GigE cameras can also be identified by their IP or
MAC address), call VimbaSystem::OpenCameraByID. An example for opening a camera retrieved from
the camera list is shown in Listing 3.

Listing 3: Open Camera
1 CameraPtrVector cameras;
2 VimbaSystem &system = VimbaSystem::GetInstance();
3

4 if (VmbErrorSuccess == system.Startup())
5 {
6 if (VmbErrorSuccess == system.GetCameras(cameras))
7 {
8 for (CameraPtrVector::iterator iter = cameras.begin();
9 cameras.end() != iter;

10 ++iter)
11 {
12 if (VmbErrorSuccess == (*iter)->Open(VmbAccessModeFull))
13 {
14 std::cout << "Camera opened" << std::endl;
15 }
16 }
17 }
18 }

Listing 4 shows how to open a camera by its IP address.

Listing 4: Open Camera by IP
1 CameraPtr camera;
2 VimbaSystem &system = VimbaSystem::GetInstance();
3

4 if (VmbErrorSuccess == system.Startup())
5 {
6 if (VmbErrorSuccess == system.OpenCameraByID("192.168.0.42",
7 VmbAccessModeFull ,
8 camera))
9 {

10 std::cout << "Camera opened" << std::endl;
11 }
12 }

To close a camera use Camera::Close.

Vimba C++ API - Programmer's Manual

12 / 22

9 Feature Access

9 Feature Access
For a quick start see ListFeatures example of the Vimba SDK.

GenICam-compliant features control and monitor various aspects of the drivers and cameras. For more
details on features see the Vimba SDK Features, the 1394 Transport Layer Feature Description or the GigE
Vision Transport Layer Feature Description.
There are several feature types which have type-specific properties and allow type-specific functionality:
Integer, Float, Enum, String, Boolean, Raw data. Additionally, since not all the features are available all
the time, there is a general necessity for querying the accessibility of features. Vimba API provides its
own set of access functions for every feature data type.
To start continuous acquisition, set the feature AcquisitionMode to Continuous and run the command
feature AcquisitionStart as shown in Listing 5.

Listing 5: Acquisition Start
1 FeaturePtr feature;
2

3 if (VmbErrorSuccess == camera->GetFeatureByName("AcquisitionMode", feature)
4 {
5 if (VmbErrorSuccess == feature->SetValue("Continuous"))
6 {
7 if (VmbErrorSuccess == camera->GetFeatureByName("AcquisitionStart",
8 feature))
9 {

10 if (VmbErrorSuccess == feature->RunCommand())
11 {
12 std::out << "Acquisition started" << std::endl;
13 }
14 }
15 }
16 }

To read the image size in bytes, see Listing 6.

Listing 6: Payload Size
1 FeaturePtr feature;
2 VmbInt64_t payloadSize;
3

4 if (VmbErrorSuccess == camera->GetFeatureByName("PayloadSize", feature)
5 {
6 if (VmbErrorSuccess == feature->GetValue(payloadSize))
7 {
8 std::out << payloadSize << std::endl;
9 }

10 }

Table 3 introduces the basic features of all cameras. A feature has a name, a type, and access flags such as
read-permitted and write-permitted.
Make sure to set the PacketSize feature of GigE cameras to a value supported by your network card. The
command feature GVSPAdjustPacketSize configures GigE cameras to use the largest possible packets.
Please note that the automatic adjustment might not lead to the expected results in a multiple camera
scenario (many cameras connected to one GigE interface). Here the available bandwidth has to be shared
between all cameras. See the feature StreamBytesPerSecond for this. Furthermore the maximum packet

Vimba C++ API - Programmer's Manual

13 / 22

9 Feature Access

Feature Type Access Flags Description

AcquisitionMode Enumeration R/W The acquisitionmode of the camera. Value set: Con-
tinuous, SingleFrame, MultiFrame.

AcquisitionStart Command Start acquiring images.

AcquisitionStop Command Stop acquiring images.

PixelFormat Enumeration R/W The image format. Possible values are e.g.: Mono8,
RGB8Packed, YUV411Packed, BayerRG8, …

Width Uint32 R/W Image width, in pixels.

Height Uint32 R/W Image height, in pixels.

PayloadSize Uint32 R Number of bytes in the camera payload, including
the image.

Table 3: Basic features found on all cameras

size might not be available to all connected cameras. If you experience problems streaming even when
the available bandwidth is equally shared between all cameras, try to reduce the packet size.
With Camera::GetFeatures, you can list all features available for a camera. This list remains static
while the camera is opened. The Feature class provides the feature's value and further information. Use
the following member functions of class Feature to access these:

GetName(std::string&) Name of the feature
GetDisplayName(std::string&) Name to display in GUI
GetDataType(VmbFeatureDataType&) Data type of the feature
GetFlags(VmbFeatureFlagsType&) Special flags
GetCategory(std::string&) Category the feature belongs to
GetPollingTime(VmbUint32_t&) The suggested time to poll the feature
GetUnit(std::string&) The unit of the feature if available
GetRepresentation(std::string&) The scale to represent the feature
GetVisibility(VmbFeatureVisibilityType&) The audience the feature is for
GetToolTip(std::string&) Short description of the feature
GetDescription(std::string&) Description of the feature
GetSFNCNamespace(std::string&) The SFNC namespace of the feature
GetAffectedFeatures(FeaturePtrVector&) Features that change if the feature is changed
GetSelectedFeatures(FeaturePtrVector&) Features that are selected by the feature
IsReadable(bool&) Determines if read access will succeed
IsWritable(bool&) Determines if write access will succeed

The GetDataType function gives information about the available functions for the feature. Table 4 lists
the available functions depending on the type returned by GetDataType. Every function a particular
feature type does not support will return VmbErrorWrongType.

GetDisplayName gives the feature name to be used in GUI text elements. GetToolTip and
GetDescription provide text for bubble help and extended help functionality. GetSFNCNamespace,
GetCategory and GetVisibility can be used to filter and group feature representation, e.g. in a tree

Vimba C++ API - Programmer's Manual

14 / 22

9 Feature Access

view. GetRepresentation can be used to change behavior of sliders for a feature, where GetUnit can
provide a unit to be displayed as additional user information.

GetFlags gives information about the actions available for a feature and how changes might affect the
feature. Read and Write flags (also available as member functions IsReadable and IsWritable)
determine whether get and set functions will succeed. Volatile features cannot be expected to return
the same value in successive reads. ModifyWrite features will adjust values by setting them to valid
values.

With the member function GetValue, a feature's value can be queried.

With the member function SetValue, a feature's value can be set. Table 4 lists the Vimba API functions
of the Feature class used to access feature values.

Feature
Type Set Get Range Other

Enum SetValue(string) GetValue(string) GetValues(StringVector) IsValueAvailable(string)
Enum SetValue(int) GetValue(int) GetValues(IntVector) IsValueAvailable(int)
Enum GetEntry(EnumEntry) GetEntries(EntryVector)
Int64 SetValue(int) GetValue(int) GetRange(int, int) GetIncrement(int)
Float SetValue(double) GetValue(double)
String SetValue(string) GetValue(string)
Bool SetValue(bool) GetValue(bool)
Command RunCommand IsCommandDone
Raw SetValue(uchar) GetValue(uchar)

Table 4: Functions for reading and writing a Feature

Integer and double features support GetRange. These functions return the minimum and maximum value
that a feature can have. Integer features also support the GetIncrement function to query the step size
of feature changes. Valid values for integer features are min <= val <= min +
[(max-min)/increment] * increment (the maximum value might not be valid).

Enumeration features support GetValues that returns a vector of valid enumerations as strings or
integers. These values can be used to set the feature accordingly to the result of IsValueAvailable. If
a non-empty vector is supplied, the original content is overwritten and the size of the vector is adjusted
to fit all elements. An enumeration feature can also be used in a similar way as an integer feature.

To get notified when a feature's value changes use Feature::RegisterObserver. The observer to be
registered has to implement the interface IFeatureObserver. This interface declares the member
function FeatureChanged. In the implementation of this function, you can react on updated feature
values as it will get called by Vimba API on the according event. Please note that
VimbaSystem::Shutdown blocks until all callbacks have finished execution. Below, you find a list of
functions that cannot be called within the callback routine.

• VimbaSystem::Startup
• VimbaSystem::Shutdown
• VimbaSystem::GetCameras
• VimbaSystem::GetCameraByID
• VimbaSystem::RegisterCameraListObserver

Vimba C++ API - Programmer's Manual

15 / 22

9 Feature Access

• VimbaSystem::UnregisterCameraListObserver
• Feature::SetValue
• Feature::RunCommand

Vimba C++ API - Programmer's Manual

16 / 22

10 Image Acquisition and Capture

10 Image Acquisition and Capture
For a quick start see SynchronousGrab, AsynchronousGrab or SampleViewer examples of the Vimba SDK.

To obtain an image from your camera, first set up Vimba API to capture images, then start the acquisition
on the camera. These two concepts – capture and acquisition – while related, are independent operations
as it is shown below (the bracketed tokens refer to the example at the end of this chapter).
To capture images sent by the camera, follow these steps:

1. Camera::AnnounceFrame – Make a frame known to the API so that it can allocate internal
resources (1).

2. Camera::StartCapture – Start the capture engine of the API. Prepare the capture stream (2).

3. Camera::QueueFrame – Queue (an already announced) frame. As images arrive from the camera,
they are placed in the next frame's buffer in the queue, and returned to the user (3).

4. When done, Camera::EndCapture – Stop the capture engine and close the image capture stream.

None of the steps above have a direct effect on the camera. To start image acquisition, follow these steps:

1. Set feature AcquisitionMode (e.g. to Continuous).

2. Run command feature AcquisitionStart (4).

To stop image acquisition, run command feature AcquisitionStop.
Normally, image capture is initialized and frame buffers are queued before the command AcquisitionStart
is run, but the order can vary depending on the application. To guarantee a particular image is captured,
you must ensure that your frames are queued before AcquisitionStart.

10.1 Image Capture

Images are captured using frame buffers that are given to Vimba in calls to the asynchronous function
Camera::QueueFrame (3). As long as the frame queue holds a frame whose buffer is large enough to
contain the image data, it is filled with the incoming image. Allocating a frame's buffer is left to the API,
although it is possible to allocate a piece of memory yourself that you then pass into the API. In both
cases first query the needed amount of memory through the feature PayloadSize (A) or calculate it
yourself. Then create a Frame object and pass either the size of desired memory or a pointer to already
allocated memory to the constructor (B). After that, announce the frame (1), start the capture engine
(2), and queue the frame you have just created with Camera::QueueFrame (3), so it can be filled when
acquisition has started.
Before a queued frame can be used or modified, the application needs to know when the image capture is
complete. Two mechanisms are available: either block your thread until capture is complete using
Camera::AcquireSingleImage for just a single image or Camera::AcquireMultipleImages for
many images, or register an observer with Frame::RegisterObserver (C). The observer to be
registered has to implement the interface IFrameObserver. In its working routine
IFrameObserver::FrameReceived, you can implement your frame handling code as well as queue the
frame again after you have processed it. This working routine is called when image capture is complete.
Below, you find a list of functions that cannot be called within the callback routine.

Vimba C++ API - Programmer's Manual

17 / 22

10 Image Acquisition and Capture

• VimbaSystem::Startup
• VimbaSystem::Shutdown
• VimbaSystem::OpenCameraByID
• Camera::Open
• Camera::Close
• Camera::AcquireSingleImage
• Camera::AcquireMultipleImages
• Camera::StartContinuousImageAcquisition
• Camera::StopContinuousImageAcquisition
• Camera::StartCapture
• Camera::EndCapture
• Camera::AnnounceFrame
• Camera::RevokeFrame
• Camera::RevokeAllFrames

NOTE: Always check that Frame::GetReceiveStatus returns VmbFrameStatusComplete when a
frame is returned to ensure the data is valid.
Many frames can be placed on the frame queue, and their image buffers will be filled in the same order
they were queued. To capture more images, keep submitting new frames (frames that you have processed
can be re-queued) as the old frames complete. Most applications need not queue more than two or three
frames at a time.
If you want to cancel all the frames on the queue, call Camera::Flush. In case the API has done
memory allocation, this memory is not released until the camera class' FlushQueue,
RevokeAllFrames / RevokeFrame, EndCapture or Close function has been called.

10.2 Image Acquisition

Image acquisition is set up with the features AcquisitionMode, AcquisitionStart (4). For stopping
acquisition, feature Acquisition is normally used.
Listing 7 shows a minimal streaming example (without error handling for the sake of simplicity).

Vimba C++ API - Programmer's Manual

18 / 22

10 Image Acquisition and Capture

Listing 7: Streaming
1 VmbErrorType err; // Every Vimba function returns an error code that the
2 // programmer should always check for VmbErrorSuccess
3 VimbaSystem &sys; // A reference to the VimbaSystem singleton
4 CameraPtrVector cameras; // A list of known cameras
5 FramePtrVector frames(3); // A list of frames for streaming. We chose
6 // to queue 3 frames.
7 IFrameObserverPtr pObserver(new MyFrameObserver()); // Our implementation
8 // of a frame observer
9 FeaturePtr pFeature; // Any camera feature

10 VmbUInt64_t nPLS; // The payload size of one frame
11

12 sys = VimbaSystem::GetInstance();
13

14 err = sys.GetCameras(cameras);
15

16 err = cameras[0]->Open(VmbAccessModeFull);
17

18 err = cameras[0]->GetFeatureByName("PayloadSize", pFeature); (A)
19 err = pFeature->GetIntValue(nPLS) (A)
20

21 for (FramePtrVector::iterator iter = frames.begin();
22 frames.end() != iter;
23 ++iter)
24 {
25 (*iter)->reset(new Frame(nPLS)); (B)
26 err = (*iter)->RegisterObserver(pObserver)); (C)
27 err = cameras[0]->AnnounceFrame(*iter); (1)
28 }
29

30 err = StartCapture(); (2)
31

32 for (FramePtrVector::iterator iter = frames.begin();
33 frames.end() != iter;
34 ++iter)
35 {
36 err = cameras[0]->QueueFrame(*iter); (3)
37 }
38

39 err = GetFeatureByName("AcquisitionStart", pFeature); (4)
40 err = pFeature->RunCommand(); (4)

Vimba C++ API - Programmer's Manual

19 / 22

11 Additional configuration: List available interfaces

11 Additional configuration: List
available interfaces

VimbaSystem::GetInterfaces will enumerate all interfaces (GigE or 1394 adapters) recognized by
the underlying transport layers.
See Listing 8 for an example.

Listing 8: Get Interfaces
1 std::string name;
2 InterfacePtrVector interfaces;
3 VimbaSystem &system = VimbaSystem::GetInstance();
4

5 if (VmbErrorSuccess == system.Startup())
6 {
7 if (VmbErrorSuccess == system.GetInterfaces(interfaces))
8 {
9 for (InterfacePtrVector::iterator iter = interfaces.begin();

10 interfaces.end() != iter;
11 ++iter)
12 {
13 if (VmbErrorSuccess == (*iter)->GetName(name))
14 {
15 std::cout << name << std::endl;
16 }
17 }
18 }
19 }

The Interface class provides the member functions to obtain information about an interface listed in
Table 5.

Function Purpose

VmbErrorType GetID(std::string&) const The unique ID

VmbErrorType GetName(std::string&) const The name

VmbErrorType GetType(VmbInterfaceType&) const The camera interface
type

VmbErrorType GetSerialNumber(std::string&) const The serial number

VmbErrorType GetPermittedAccess(VmbAccessModeType&) const Themode to open the
interface

Table 5: Basic functions of Interface class

Static features that do not change throughout the object's lifetime such as ID and Name can be queried
without having to open the camera.
To get notified when an Interface is detected or disconnected, use
VimbaSystem::RegisterInterfaceListObserver. The observer to be registered has to implement
the interface IInterfaceListObserver. This interface declares the member function
InterfaceListChanged. In your implementation of this function, you can react on interfaces being
plugged in or out as it will get called by Vimba API on the according event.

Vimba C++ API - Programmer's Manual

20 / 22

12 Error Codes

12 Error Codes
All Vimba API functions return an error code of type VmbErrorType.
Typical errors are listed with each function in the Function Reference Manual. However, any of the error
codes listed in Table 6 might be returned.

Error Code Int Value Description

VmbErrorSuccess 0 No error

VmbErrorInternalFault -1 Unexpected fault in Vimba or driver

VmbErrorApiNotStarted -2 Startup was not called before the current comand

VmbErrorNotFound -3 The designated instance (camera, feature etc.) cannot be
found

VmbErrorBadHandle -4 The given handle is not valid

VmbErrorDeviceNotOpen -5 Device was not opened for usage

VmbErrorInvalidAccess -6 Operation is invalid with the current access mode

VmbErrorBadParameter -7 One of the parameters is invalid (usually an illegal pointer)

VmbErrorStructSize -8 The given struct size is not valid for this version of the API

VmbErrorMoreData -9 More data available in a string/list than space is provided

VmbErrorWrongType -10 Wrong feature type for this access function

VmbErrorInvalidValue -11 The value is not valid; either out of bounds or not an incre-
ment of the minimum

VmbErrorTimeout -12 Timeout during wait

VmbErrorOther -13 Other error

VmbErrorResources -14 Resources not available (e.g. memory)

VmbErrorInvalidCall -15 Call is invalid in the current context (e.g. callback)

VmbErrorNoTL -16 No transport layers are found

VmbErrorNotImplemented -17 API feature is not implemented

VmbErrorNotSupported -18 API feature is not supported

VmbErrorIncomplete -19 A multiple registers read or write is partially completed

Table 6: Error codes returned by Vimba

Vimba C++ API - Programmer's Manual

21 / 22

13 Function reference

13 Function reference
For a complete list of all methods, see the Vimba C++ Function Reference Manual

Vimba C++ API - Programmer's Manual

22 / 22

	Contacting Allied Vision Technologies
	Introduction
	Document history
	Conventions used in this manual
	Styles
	Symbols

	General aspects of the API
	Module Version
	Module Initialization
	Shared Pointers
	General aspects
	Restrictions
	Customizing shared pointer usage

	List available cameras
	Opening a camera
	Feature Access
	Image Acquisition and Capture
	Image Capture
	Image Acquisition

	Additional configuration: List available interfaces
	Error Codes
	Function reference

