Vimba C API

virmbBbA

AVT SOFTWARE DEVELOPMENT KIT

Vimba C API

Function Reference Manual

V1.2
2013-Aug-28

Allied Vision Technologies GmbH A I_ I_ | E D
Taschenweg 2a

D-07646 Stadtroda / Germany Vision Technologies

/1/

Legal Notice

Trademarks

Unless stated otherwise, all trademarks appearing in this document of Allied Vision Technologies are
brands protected by law.

Warranty

The information provided by Allied Vision Technologies is supplied without any guarantees or warranty
whatsoever, be it specific or implicit. Also excluded are all implicit warranties concerning the
negotiability, the suitability for specific applications or the non-breaking of laws and patents. Even if we
assume that the information supplied to us is accurate, errors and inaccuracy may still occur.

Copyright

All texts, pictures and graphics are protected by copyright and other laws protecting intellectual property.
Itis not permitted to copy or modify them for trade use or transfer, nor may they be used on websites.

Allied Vision Technologies GmbH 08/2013

All rights reserved.
Managing Director: Mr. Frank Grube
Tax ID: DE 184383113

Headquarters:

Taschenweg 2a

D-07646 Stadtroda, Germany
Tel.: +49 (0)36428 6770

Fax: +49 (0)36428 677-28
e-mail: info@alliedvisiontec.com

Vimba C API - Function Reference Manual

2/35

mailto:info@alliedvisiontec.com?subject=AVT1394TL

Contents

Contents

1 Contacting Allied Vision Technologies

2 Introduction
2.1 Conventions used in this manual

211 Styles o oL,
21.2 Symbols.

3 Callbacks

3.1 VmbInvalidationCallback
3.2 VmbFrameCallback

4 API Version

4.1 VmbVersionQuery()

5 APIInitialization

5.1 VmbStartup()
5.2 VmbShutdown()

6 Camera Enumeration & Information

6.1 VmbCamerasList()
6.2 VmbCameralnfoQuery()
6.3 VmbCameraOpen()
6.4 VmbCameraClose()

7 Features

7.1 VmbFeatureslist()
7.2 VmbFeatureInfoQuery()
7.3 VmbFeaturelistAffected()
7.4 VmbFeaturelistSelected()
7.5 VmbFeatureAccessQuery()

8 Integer

8.1 VmbFeaturelntGet()
8.2 VmbFeatureIntSet()
8.3 VmbFeatureIntRangeQuery()

8.4 VmbFeatureIntIncrementQuery()

9 Float

9.1 VmbFeatureFloatGet()
9.2 VmbFeatureFloatSet()

9.3 VmbFeatureFloatRangeQuery()

10 Enum

.......

/1/

11

...................... 11
...................... 11
...................... 12
...................... 12
...................... 13

14

...................... 14
...................... 14
...................... 14
...................... 15

16

...................... 16
...................... 16
...................... 16

18

Vimba C API - Function Reference Manual

3/35

Contents

10.1 VmbFeatureEnumGet()
10.2 VmbFeatureEnumSet()

10.3 VmbFeatureEnumRangeQuery()
10.4 VmbFeatureEnumIsAvailable()

10.5 VmbFeatureEnumAsInt()
10.6 VmbFeatureEnumAsString()
10.7 VmbFeatureEnumEntryGet()

11 String

12

11.1 VmbFeatureStringGet()
11.2 VmbFeatureStringSet()
11.3 VmbFeatureStringMaxlengthQuery()

Boolean

12.1 VmbFeatureBoolGet()
12.2 VmbFeatureBoolSet()

13 Command

14

15

16

17 Interface Enumeration & Information

17.1 VmblInterfacesList()
17.2 VmbInterfaceOpen()
17.3 VmblnterfaceClose()

13.1 VmbFeatureCommandRun()

13.2 VmbFeatureCommandIsDone()

Raw

14.1 VmbFeatureRawGet()
14.2 VmbFeatureRawSet()

14.3 VmbFeatureRawLengthQuery()

Feature invalidation

15.1 VmbFeatureInvalidationRegister()
15.2 VmbFeatureInvalidationUnregister()

Image preparation and acquisition

16.1 VmbFrameAnnounce()
16.2 VmbFrameRevoke()
16.3 VmbFrameRevokeAll()
16.4 VmbCaptureStart()
16.5 VmbCaptureEnd()
16.6 VmbCaptureFrameQueue()
16.7 VmbCaptureFrameWait()
16.8 VmbCaptureQueueFlush()

21

....................... 21
....................... 21
........................... 21

23

....................... 23
....................... 23

24

....................... 24
....................... 24

25

....................... 25
....................... 25
....................... 26

27

............................ 27
........................... 27

Vimba C API - Function Reference Manual

4/35

J//ALLIED

Contents Vision Technologies

18 Ancillary data 33
18.1 VmbAncillaryDataOpen() o v i i e e e e e e e 33
18.2 VmbAncillaryDataClose() v v v i i i e e e e e e e e 33

19 Raw memory/register access 34
19.1 VmbMemoryRead() i e e 34
19.2 VmbMemoryWrite() e e e e e e e e e e e e e e e 34
19.3 VmbRegistersRead() L e e 34
19.4 VmbRegistersWrite() o e e e e e e e 35

Vimba C API - Function Reference Manual
[R R R R

5/35

1 C(ontacting Allied Vision Technologies / / /

1 Contacting Allied Vision

Technologies
Note ¢ Technical Information
http://www.alliedvisiontec.com
@ e Support
support@alliedvisiontec.com

Allied Vision Technologies GmbH (Headquarters)
Taschenweg 2a

07646 Stadtroda, Germany

Tel.: +49 36428-677-0

Fax.: +49 36428-677-28

Email: info@alliedvisiontec.com

Allied Vision Technologies Canada Inc.
101-3750 North Fraser Way

Burnaby, BC, V5J 5E9, Canada

Tel: +1 604-875-8855

Fax: +1 604-875-8856

Email: info@alliedvisiontec.com

Allied Vision Technologies Inc.

38 Washington Street
Newburyport, MA 01950, USA

Toll Free number +1 877-USA-1394
Tel.: +1 978-225-2030

Fax: +1 978-225-2029

Email: info@alliedvisiontec.com

Allied Vision Technologies Asia Pte. Ltd.
82 Playfair Road

#07-02 D'Lithium

Singapore 368001

Tel. +65 6634-9027

Fax:+65 6634-9029

Email: info@alliedvisiontec.com

Allied Vision Technologies (Shanghai) Co., Ltd.
2-2109 Hongwell International Plaza

1602# ZhongShanXi Road

Shanghai 200235, China

Tel: +86 (21) 64861133

Fax: +86 (21) 54233670

Email: info@alliedvisiontec.com

Vimba C API - Function Reference Manual

6/35

http://www.alliedvisiontec.com
mailto:support@alliedvisiontec.com
mailto:info@alliedvisiontec.com
mailto:info@alliedvisiontec.com
mailto:info@alliedvisiontec.com
mailto:info@alliedvisiontec.com
mailto:info@alliedvisiontec.com

2 Introduction / / /

2
2.1

Introduction

Conventions used in this manual

To give this manual an easily understood layout and to emphasize important information, the following
typographical styles and symbols are used:

2.1.1 Styles
Style ‘ Function ‘ Example
Bold Programs, inputs or highlight- | bold
ing important things
Courier Code listings etc. Input
Upper case Constants CONSTANT
Italics Modes, fields Mode
Parentheses and/or blue Links (Link)
2.1.2 Symbols
Note
@ This symbol highlights important information.
Caution
This symbol highlights importantinstructions. You have to follow these instruc-
/ tions to avoid malfunctions.

This symbol highlights URLs for further information. The URL itself is shown in

www
P, i blue.
i 4 !-. Example: http://www.alliedvisiontec.com

Vimba C API - Function Reference Manual

7/35

http://www.alliedvisiontec.com

3 Callbacks / / /

3 Callbacks
3.1 VmblinvalidationCallback

Invalidation Callback type

Type Name Description

in const VmbHandle_t | handle Handle for a module that exposes features

in const charx name Name of the feature

in voidx pUserContext | Pointer to the user context, see VmbFeaturelnvalida-
tionRegister

3.2 VmbFrameCallback

Frame Callback type

Type Name Description
in const VmbHandle t | cameraHandle | Handle of the camera
out VmbFrame_t* pFrame Frame completed

Vimba C API - Function Reference Manual

8/35

4 API Version / / /

4 API Version
4.1 VmbVersionQuery()

Retrieve the version number of VimbaC.

‘ Description
out VmbVersionInfo_t* | pVersionInfo Pointer to the struct where version information is
copied
| in VmbUint32_t | sizeofVersionInfo | Size of structure in bytes

* VmbErrorSuccess: If no error
* VmbErrorStructSize: The given struct size is not valid for this version of the API
* VmbErrorBadParameter: "pVersionInfo" is NULL.

Note
This function can be called at anytime, even before the API is initialized. All

@ other version numbers may be queried via feature access

Vimba C API - Function Reference Manual

9/35

5 API Initialization / / /

5 API Initialization
5.1 VmbStartup()

Initialize the VimbaC API.

e VmbErrorSuccess: If no error
¢ VmbErrorInternalFault: Aninternal fault occurred

Note
@ On successful return, the API is initialized; this is a necessary call.

5.2 VmbShutdown()

Perform a shutdown on the API.

Note
@ This will free some resources and deallocate all physical resources if applicable.

Vimba C API - Function Reference Manual

10/35

6 Camera Enumeration & Information / / /

6 Camera Enumeration & Information
6.1 VmbCameraslList()

Retrieve a list of all cameras.

Type Name Description
out VmbCameraInfo_t* | pCameralnfo Array of VmbCameralnfo_t, allocated by the caller.
The camera list is copied here. May be NULL.
in VmbUint32_t listLength Number of VmbCameralnfo_t elements provided
out VmbUint32_tx* pNumFound Number of VmbCameralnfo_t elements found. May
be NULL.

in VmbUint32_t

sizeofCameralnfo | Size of the structure

* VmbErrorSuccess: If no error

* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorStructSize: The given struct size is not valid for this API version

* VmbErrorMoreData: More data was returned than space was provided

Note

®

Camera detection is started with the first call of VmbCamerasList() or the reg-
istration of the "DiscoveryInterfaceEvent" event. The first call of VmbCam-
erasList() might be delayed if no "DiscoveryInterfaceEvent" eventis registered
(see GigE Discovery procedure). If "pCameralnfo" is NULL on entry, only the
number of interfaces is returned in "pNumFound".

6.2 VmbCameralnfoQuery()

Retrieve information on a camera given by an ID.

Type Name Description
in const charx idString Unique ID of the camera
out VmbCameraInfo_t* | pInfo Structure where information will be copied. May be
NULL.
in VmbUint32_t sizeofCameralnfo | Size of the structure

* VmbErrorSuccess: If no error

* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorNotFound: The designated camera cannot be found

¢ VmbErrorStructSize: The given struct size is not valid for this API version

* VmbErrorMoreData: More data was returned than space was provided

Note

®

May be called if a camera is not yet under control of the application. "id-
String" might be one of the following:"169.254.12.13" ora plain serial number:
"1234567890"

Vimba C API - Function Reference Manual

11/35

6 Camera Enumeration & Information / / /

6.3 VmbCameraOpen|)

Open the specified camera.

Type Name Description

in const char* idString Unique ID of the camera
in VmbAccessMode_t | accessMode Access mode determines the amount of control you
have on the camera
out VmbHandle_tx* pCameraHandle | A camera handle

* VmbErrorSuccess: If no error

* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorNotFound: The designated camera cannot be found

* VmbErrorInvalidAccess: Operation is invalid with the current access mode

Note A camera may be opened in a specific access mode. This mode determines the

~ _— ____ amountofcontrol you have on a camera. "idString" might be one of the follow-

@ ing: "169.254.12.13" for an IP address, "000F314C4BE5" for a MAC address or
"1234567890" for a plain serial number.

6.4 VmbCameraClose()

Close the specified camera.

Description

in const VmbHandle t | cameraHandle | Avalid camera handle

* VmbErrorSuccess: If no error
* VmbErrorApiNotStarted: VmbStartup() was not called before the current command

Note
Depending on the access mode this camera was opened with, events are killed,

@ callbacks are unregistered, and camera control is released.

Vimba C API - Function Reference Manual

12/35

7 Features

7 Features

7.1 VmbFeatureslList()

List all the features for this module.

/1/

Type Name ‘ Description
in const VmbHandle_t | handle Handle for a module that exposes features
out VmbFeatureInfo_t* | pFeaturelnfolist | Anarray of VmbFeaturelnfo_tto befilled bythe API.
May be NULL.
in VmbUint32_t listLength Number of VmbFeaturelnfo_t elements provided
out VmbUint32_tx pNumFound Number of VmbFeatureIlnfo_t elements found. May
be NULL.
in VmbUint32_t featureInfoSize | Size of an VmbFeatureInfo_t entry

* VmbErrorSuccess: If no error
* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

* VmbErrorInvalidAccess: Operation is invalid with the current access mode

* VmbErrorStructSize: The given struct size is not valid for this version of the API

Note This method lists allimplemented features, whether they are currently available
or not. The list of features does not change as long as the camera/interface is
connected. "pNumFound" returns the number of VmbFeatureInfo elements.

7.2 VmbFeaturelnfoQuery()

Query information about the constant properties of a feature.

Type Name Description
in const VmbHandle_t | handle Handle for a module that exposes features
in const charx name Name of the feature
out VmbFeatureInfo_t* | pFeaturelnfo The feature info to query.
in VmbUint32_t featureInfoSize | Size of the structure

* VmbErrorSuccess: If no error
* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

* VmbErrorInvalidAccess: Operation is invalid with the current access mode

* VmbErrorStructSize: The given struct size is not valid for this version of the API

Note

Users provide a pointer to VmbFeatureInfo_t which is then set to the internal

@ representation.

Vimba C API - Function Reference Manual

13/35

7 Features

/1/

7.3 VmbFeaturelistAffected()

List all the features that might be affected by changes to this feature.

Type Name Description
in const VmbHandle_t | handle Handle for a module that exposes features
in const char* name Name of the feature
out VmbFeatureInfo_t* | pFeaturelnfolist | Anarray of VmbFeatureInfo_tto befilled bythe APL.
May be NULL.
in VmbUint32_t listLength Number of VmbFeatureInfo_t elements provided
out VmbUint32_t* pNumFound Number of VmbFeatureInfo_t elements found. May
be NULL.
in VmbUint32_t featureInfoSize | Size of an VmbFeatureInfo_t entry

* VmbErrorSuccess: If no error
* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

* VmbErrorInvalidAccess: Operation is invalid with the current access mode

¢ VmbErrorStructSize: The given struct size is not valid for this version of the API

Note

®

This method lists all affected features, whether they are currently available or
not. The value of affected features depends directly or indirectly on this fea-
ture (including all selected features). The list of features does not change as
long as the camera/interface is connected. "pNumFound" returns the number

of VmbFeatureInfo elements.

7.4 VmbFeaturelListSelected()

List all the features selected by a given feature for this module.

Type Name ‘ Description
in const VmbHandle_t | handle Handle for a module that exposes features
in const char* name Name of the feature
out VmbFeatureInfo_t* | pFeaturelnfolist | Anarray of VmbFeaturelnfo_tto befilled bythe API.
May be NULL.
in VmbUint32_t listLength Number of VmbFeaturelnfo_t elements provided
out VmbUint32_tx pNumFound Number of VmbFeatureInfo_t elements found. May
be NULL.
in VmbUint32_t featureInfoSize | Size of an VmbFeatureInfo_t entry

* VmbErrorSuccess: If no error
* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

* VmbErrorInvalidAccess: Operation is invalid with the current access mode

* VmbErrorStructSize: The given struct size is not valid for this version of the API

Vimba C API - Function Reference Manual

14/ 35

7 Features / / /

This method lists all selected features, whether they are currently available or

Note not. Features having selected features ("selectors") have no direct impact on

T~ the camera, but only have an influence on the register address that selected

@ features point to. The list of features does not change as long as the camer-
a/interfaceis connected. "pNumFound" returns the number of VmbFeatureInfo
elements.

7.5 VmbFeatureAccessQuery|()

Return the dynamic read and write capabilities of this feature.

Type Name ‘ Description
in const VmbHandle_t | handle Handle for a module that exposes features.
in const char * name Name of the feature.
out VmbBool_t * pIsReadable | Indicates if this feature is readable. May be NULL.
out VmbBool_ t * pIsWriteable | Indicates if this feature is writable. May be NULL.

* VmbErrorSuccess: If no error

* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

* VmbErrorInvalidAccess: Operation is invalid with the current access mode

* VmbErrorBadParameter: pIsReadable and pIsWriteable were both NULL

Note
The access mode of a feature may change. For example, if "PacketSize" is locked

@ while image data is streamed, it is only readable.

Vimba C API - Function Reference Manual

15/35

. /1/

8

Integer

8.1 VmbFeaturelntGet()

Get the value of an integer feature.

Name | Description
in const VmbHandle_t | handle | Handle for a module that exposes features

in const charx* name Name of the feature

out VmbInt64_t* pValue | Valueto get

VmbErrorSuccess: If no error

VmbErrorApiNotStarted: VmbStartup() was not called before the current command
VmbErrorBadHandle: The given handle is not valid

VmbErrorInvalidAccess: Operation is invalid with the current access mode
VmbErrorWrongType: The type of feature "name" is not Integer

8.2 VmbFeaturelntSet()

Set the value of an integer feature.

Type Name | Description

in const VmbHandle_t | handle | Handle for a module that exposes features
in const charx name | Name of the feature
in VmbInt64_t value | Valueto set

VmbErrorSuccess: If no error

VmbErrorApiNotStarted: VmbStartup() was not called before the current command
VmbErrorBadHandle: The given handle is not valid

VmbErrorInvalidAccess: Operation is invalid with the current access mode
VmbErrorWrongType: The type of feature "name" is not Integer

VmbErrorInvalidValue: "value" is either out of bounds or not an increment of the minimum

8.3 VmbFeaturelntRangeQuery()

Query the range of an integer feature.

Type Name | Description

in const VmbHandle_t | handle | Handle for a module that exposes features

in const char* name | Name of the feature
out VmbInt64_t* pMin Minimum value to be returned. May be NULL.
out VmbInt64_t* pMax | Maximum value to be returned. May be NULL.

VmbErrorSuccess: If no error

VmbErrorApiNotStarted: VmbStartup() was not called before the current command
VmbErrorBadHandle: The given handle is not valid

VmbErrorInvalidAccess: Operation is invalid with the current access mode
VmbErrorWrongType: The type of feature "name" is not Integer

Vimba C API - Function Reference Manual

16/35

. /1/

8.4 VmbFeaturelntincrementQueryl)

Query the increment of an integer feature.
Type Name | Description
in const VmbHandle_t | handle | Handle for a module that exposes features
in const char* name | Name of the feature
out VmbInt64_t* pValue | Value of the increment to get.

* VmbErrorSuccess: If no error

* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

* VmbErrorInvalidAccess: Operation is invalid with the current access mode

* VmbErrorWrongType: The type of feature "name" is not Integer

Vimba C API - Function Reference Manual

17/35

\ o /1/

9 Float
9.1 VmbFeatureFloatGet()

Get the value of a float feature.
Type Name | Description
in const VmbHandle_t | handle | Handle for a module that exposes features
in const charx name | Name of the feature
out doublex pValue | Valueto get

* VmbErrorSuccess: If no error

* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

¢ VmbErrorInvalidAccess: Operation is invalid with the current access mode

* VmbErrorWrongType: The type of feature "name" is not Float

9.2 VmbFeatureFloatSet()

Set the value of a float feature.
in const VmbHandle_t | handle | Handle for a module that exposes features
in const char* name | Name of the feature

in double value | Valueto set

* VmbErrorSuccess: If no error

* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

* VmbErrorInvalidAccess: Operation is invalid with the current access mode

* VmbErrorWrongType: The type of feature "name" is not Float

* VmbErrorInvalidValue: "value" is not within valid bounds

9.3 VmbFeatureFloatRangeQuery()

Query the range of a float feature.

Type Name ‘ Description

in const VmbHandle_t | handle | Handle for a module that exposes features

in const char* name | Name of the feature
out doublex pMin Minimum value to be returned. May be NULL.
out doublex pMax Maximum value to be returned. May be NULL.

* VmbErrorSuccess: If no error

* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

* VmbErrorInvalidAccess: Operation is invalid with the current access mode

Vimba C API - Function Reference Manual

18/35

J//ALLIED

9 Float Vision Technologies

* VmbErrorWrongType: The type of feature "name" is not Float

Note
Only one of the values may be queried if the other parameteris set to NULL, but
@ if both parameters are NULL, an error is returned.

Vimba C API - Function Reference Manual
[R R R R

19/35

o o /1/

10 Enum
10.1 VmbFeatureEnumGet()

Get the value of an enumeration feature.
Type Name | Description
in const VmbHandle_t | handle | Handle for a module that exposes features
in const char* name | Name of the feature
out const charxx pValue | The current enumeration value

* VmbErrorSuccess: If no error

* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

* VmbErrorInvalidAccess: Operation is invalid with the current access mode

* VmbErrorWrongType: The type of feature "name" is not Enumeration

10.2 VmbFeatureEnumSet()

Set the value of an enumeration feature.
Type Name | Description
in const VmbHandle_t | handle | Handle for a module that exposes features
in const charx* name Name of the feature
in const charx* value | Valueto set

* VmbErrorSuccess: If no error

* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorInvalidAccess: Operation is invalid with the current access mode

* VmbErrorBadHandle: The given handle is not valid

* VmbErrorInvalidAccess: Operation is invalid with the current access mode

* VmbErrorWrongType: The type of feature "name" is not Enumeration

* VmbErrorInvalidValue: "value" is not within valid bounds

10.3 VmbFeatureEnumRangeQuery()

Query the value range of an enumeration feature.

Type Name ‘ Description
in const VmbHandle_t | handle Handle for a module that exposes features
in const char* name Name of the feature
out const charx const* pNameArray An Array of enumeration value names
in VmbUint32_t arrayLength | Number of elementsin the array
out VmbUint32_t * pNumFilled | Number of filled elements

* VmbErrorSuccess: If no error
* VmbErrorApiNotStarted: VmbStartup() was not called before the current command

Vimba C API - Function Reference Manual

20/35

10 Enum

/1/

* VmbErrorBadHandle: The given handle is not valid

* VmbErrorInvalidAccess: Operation is invalid with the current access mode
* VmbErrorMoreData: More data was returned than space was provided

* VmbErrorWrongType: The type of feature "name" is not Enumeration

10.4 VmbFeatureEnumlisAvailable()

Check if a certain value of an enumeration is available.

Name Description

Type

in const VmbHandle_t | handle Handle for a module that exposes features
in const charx name Name of the feature
in const charx value Value to check
out VmbBool_t * pIsAvailable | Indicates if the given enumeration value is available

* VmbErrorSuccess: If no error
* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

* VmbErrorInvalidAccess: Operation isinvalid with the current access mode

* VmbErrorWrongType: The type of feature "name" is not Enumeration

10.5 VmbFeatureEnumAsint()

Get the integer value for a given enumeration string value.

Type Name Description
in const VmbHandle_t | handle | Handle for a module that exposes features
in const charx name Name of the feature
in const charx value The enumeration value to get the integer value for
out VmbInt64_t* pIntVal | Theinteger value for this enumeration entry

* VmbErrorSuccess: If no error
* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

* VmbErrorInvalidAccess: Operation is invalid with the current access mode

* VmbErrorWrongType: The type of feature "name" is not Enumeration

Note

®

Converts a name of an enum member into an int value ("Mono12Packed" to

0x10C0006)

10.6 VmbFeatureEnumAsString()

Get the enumeration string value for a given integer value.

Vimba C API - Function Reference Manual

21/35

/1/

10 Enum
Type Name Description
in const VmbHandle_t | handle Handle for a module that exposes features
in const char* name Name of the feature
in VmbInt64_t intValue The numeric value
out const char*x pStringValue | The string value for the numeric value

* VmbErrorSuccess: If no error
* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

* VmbErrorInvalidAccess: Operation is invalid with the current access mode

* VmbErrorWrongType: The type of feature "name" is not Enumeration

Note

Converts an int value to a name of an enum member (e.g. 0x10C0006 to

@ "Mono12Packed")

10.7 VmbFeatureEnumEntryGet()

Get infos about an entry of an enumeration feature.

Type Name Description

in const VmbHandle_t handle Handle for a module that exposes fea-
tures

in const char* featureName Name of the feature

in const char* entryName Name of the enum entry of that feature

out VmbFeatureEnumEntry_t* | pFeatureEnumEntry Infos about that entry returned by the

API

in VmbUint32_t featureEnumEntrySize | Size of the structure

* VmbErrorSuccess: If no error
* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

* VmbErrorInvalidAccess: Operation is invalid with the current access mode

* VmbErrorWrongType: The type of feature "name" is not Enumeration

Vimba C API - Function Reference Manual

22/35

s /1/

11 String
11.1 VmbFeatureStringGet()

Get the value of a string feature.

Type Name Description

in const VmbHandle_t | handle Handle for a module that exposes features
in const char* name Name of the string feature

out charx buffer String buffer to fill
in VmbUint32_t bufferSize | Size of the input buffer

out VmbUint32_tx* pSizeFilled | Size actually filled

* VmbErrorSuccess: If no error

* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

* VmbErrorInvalidAccess: Operation is invalid with the current access mode

* VmbErrorMoreData: More data was returned than space was provided

* VmbErrorWrongType: The type of feature "name" is not String

11.2 VmbFeatureStringSet()

Set the value of a string feature.

Type Name | Description

in const VmbHandle_t | handle | Handle for a module that exposes features
in const charx name | Name of the string feature
in const charx value | Valueto set

* VmbErrorSuccess: If no error

* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

* VmbErrorInvalidAccess: Operation is invalid with the current access mode

¢ VmbErrorWrongType: The type of feature "name" is not String

* VmbErrorInvalidValue: Length of "value" exceeded the maximum length

11.3 VmbFeatureStringMaxlengthQuery()

Get the maximum length of a string feature.

Type Name Description

in const VmbHandle_t | handle Handle for a module that exposes features
in const char* name Name of the string feature
out VmbUint32_tx* pMaxLength | Maximum length of this string feature

¢ VmbErrorSuccess: If no error

Vimba C API - Function Reference Manual

23/35

J//ALLIED

11 String Vision Technologies

* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

* VmbErrorInvalidAccess: Operation is invalid with the current access mode

* VmbErrorWrongType: The type of feature "name" is not String

Vimba C API - Function Reference Manual
[R R R R

24/ 35

/1/

12 Boolean

12 Boolean
12.1 VmbFeatureBoolGet()

Get the value of a boolean feature.
in const VmbHandle_t | handle | Handle for a module that exposes features
in const char* name | Name of the boolean feature

out VmbBool_t * pValue | Value to be read

* VmbErrorSuccess: If no error

* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

* VmbErrorInvalidAccess: Operation is invalid with the current access mode

* VmbErrorWrongType: The type of feature "name" is not Boolean

12.2 VmbFeatureBoolSet()

Set the value of a boolean feature.

Name | Description

const VmbHandle_t | handle | Handle for a module that exposes features
in const charx* name Name of the boolean feature
in VmbBool t value Value to write

* VmbErrorSuccess: If no error

* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

* VmbErrorInvalidAccess: Operation is invalid with the current access mode

* VmbErrorWrongType: The type of feature "name" is not Boolean

* VmbErrorInvalidValue: "value" is not within valid bounds

Vimba C API - Function Reference Manual

25/35

13 Command ///

13 Command
13.1 VmbFeatureCommandRun()

Run a feature command.

Type Name | Description

in const VmbHandle_t | handle | Handle for a module that exposes features
in const charx name | Name of the command feature

* VmbErrorSuccess: If no error

* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

* VmbErrorInvalidAccess: Operation is invalid with the current access mode

* VmbErrorWrongType: The type of feature "name" is not Command

13.2 VmbFeatureCommandisDone()

Check if a feature command is done.
Type Name Description
in const VmbHandle_t | handle | Handlefora module that exposes features
in const charx name Name of the command feature
out VmbBool_t * pIsDone | State of the command.

* VmbErrorSuccess: If no error

* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

* VmbErrorInvalidAccess: Operation is invalid with the current access mode

* VmbErrorWrongType: The type of feature "name" is not Command

Vimba C API - Function Reference Manual

26/35

‘o /1/

14 Raw
14.1 VmbFeatureRawGet()

Read the memory contents of an area given by a feature name.

Type Name ‘ Description
in const VmbHandle_t | handle Handle for a module that exposes features
in const char* name Name of the raw feature
out charx pBuffer Buffer to fill
in VmbUint32_t bufferSize | Size of the buffer to be filled
out VmbUint32_tx* pSizeFilled | Number of bytes actually filled

VmbErrorSuccess: If no error

VmbErrorApiNotStarted: VmbStartup() was not called before the current command
VmbErrorBadHandle: The given handle is not valid

VmbErrorInvalidAccess: Operation is invalid with the current access mode
VmbErrorMoreData: More data was returned than space was provided
VmbErrorWrongType: The type of feature "name" is not Register

Note This feature type corresponds to a first-level "Register" node in the XML file.

T _— Datatransferis split up by the transport layer if the feature length is too large.

@ You can get the size of the memory area addressed by the feature "name" by
VmbFeatureRawLengthQuery().

14.2 VmbFeatureRawSet()

Write to a memory area given by a feature name.

Type Name Description

in const VmbHandle_t | handle Handle for a module that exposes features
in const charx name Name of the raw feature

in const charx pBuffer Data buffer to use

in VmbUint32_t bufferSize | Size of the buffer

VmbErrorSuccess: If no error

VmbErrorApiNotStarted: VmbStartup() was not called before the current command
VmbErrorBadHandle: The given handle is not valid

VmbErrorInvalidAccess: Operation is invalid with the current access mode
VmbErrorWrongType: The type of feature "name" is not Register

Note This feature type corresponds to a first-level "Register" node in the XML file.

T~ ____ Datatransferis split up by the transport layer if the feature length is too large.

@ You can get the size of the memory area addressed by the feature "name" by
VmbFeatureRawLengthQuery().

Vimba C API - Function Reference Manual

27/35

14 Raw

/1/

14.3 VmbFeatureRawlLengthQuery()

Get the length of a raw feature for memory transfers.

Type Name Description
in const VmbHandle_t | handle | Handle fora module that exposes features
in const char* name Name of the raw feature
out VmbUint32_tx* pLength | Length of the raw feature area (in bytes)

* VmbErrorSuccess: If no error
* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

* VmbErrorInvalidAccess: Operation is invalid with the current access mode

* VmbErrorWrongType: The type of feature "name" is not Register

Note

@ This feature type corresponds to a first-level "Register" node in the XML file.

Vimba C API - Function Reference Manual

28/35

15 Feature invalidation

/1/

15 Feature invalidation

15.1 VmbFeaturelnvalidationRegister()

Register a callback for feature invalidation signaling.

Type

Name

Description

const VmbHandle_t handle Handle for a module that emits events
in const char* name Name of the event (NULL to register for any fea-
ture)
in VmbInvalidationCallback | callback Callback to be run, when invalidation occurs
in voidx pUserContext | User context passed to function

VmbErrorSuccess: If no error

VmbErrorApiNotStarted: VmbStartup() was not called before the current command
VmbErrorBadHandle: The given handle is not valid
VmbErrorInvalidAccess: Operation is invalid with the current access mode

Note Registering multiple callbacks for one feature invalidation eventis possible be-

T cause only the combination of handle, name, and callback is used as key. If the

@ same combination of handle, name, and callback is registered a second time, it
overwrites the previous one.

Caution Consider if it could make sense to register the same combination of handle,
name, and callback (with different user context) so that the same callback is

/ called multiple times. Callbacks would have to be stored in a queue/stack.

15.2 VmbFeaturelnvalidationUnregister()

Unregister a previously registered feature invalidation callback.

Type

Name

Description
Handle for a module that emits events

in const VmbHandle t
in const charx* name Name of the event
in VmbInvalidationCallback | callback | Callback to be removed

VmbErrorSuccess: If no error

VmbErrorApiNotStarted: VmbStartup() was not called before the current command
VmbErrorBadHandle: The given handle is not valid
VmbErrorInvalidAccess: Operation is invalid with the current access mode

Note

Since multiple callbacks may be registered for a feature invalidation event, a
@ combination of handle, name, and callback is needed for unregistering, too.

Vimba C API - Function Reference Manual

29/35

16 Image preparation and acquisition

16

/1

Image preparation and acquisition

16.1 VmbFrameAnnounce()

Announce frames to the API that may be queued for frame capturing later.

Type Name Description
in const VmbHandle t | cameraHandle | Handle fora camera
in const VmbFrame_t* | pFrame Frame buffer to announce
in VmbUint32_ t sizeofframe Size of the frame structure

VmbErrorSuccess: If no error
VmbErrorApiNotStarted: VmbStartup() was not called before the current command
VmbErrorBadHandle: The given handle is not valid

VmbErrorStructSize: The given struct size is not valid for this version of the API

Note Allows some preparation for frames like DMA preparation depending on the
transport layer. The order in which the frames are announced is not taken into
consideration by the API.

16.2 VmbFrameRevoke()

Revoke a frame from the API.

Type Name Description
in const VmbHandle_t | cameraHandle | Handle for a camera
in const VmbFrame_t* | pFrame Frame buffer to be removed from the list of announced

frames

VmbErrorSuccess: If no error
VmbErrorApiNotStarted: VmbStartup() was not called before the current command
VmbErrorBadHandle: The given frame pointer is not valid

VmbErrorStructSize: The given struct size is not valid for this version of the API

Note

@ The referenced frame is removed from the pool of frames for capturing images.

16.3 VmbFrameRevokeAll()

Revoke all frames assigned to a certain camera.

mn

Type
const VmbHandle_t

Name
cameraHandle

Description
Handle for a camera

Vimba C API - Function Reference Manual

30/35

16 Image preparation and acquisition / / /

* VmbErrorSuccess: If no error
* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

16.4 VmbCaptureStart()

Prepare the API for incoming frames.
Type Name Description
in const VmbHandle_t | cameraHandle | Handle for a camera

* VmbErrorSuccess: If no error

* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

* VmbErrorDeviceNotOpen: Camera was not opened for usage

* VmbErrorInvalidAccess: Operation is invalid with the current access mode

16.5 VmbCaptureEnd()

Stop the API from being able to receive frames.

Description

in const VmbHandle t | cameraHandle | Handle for a camera

* VmbErrorSuccess: If no error
* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

Note
Consequences of VmbCaptureEnd(): - Theinput queueis flushed - The frame call-

@ back will not be called any more

16.6 VmbCaptureFrameQueue()

Queue frames that may be filled during frame capturing.

Type Name Description
in const VmbHandle t | cameraHandle | Handle of the camera
in const VmbFrame_t* | pFrame Pointer to an already announced frame
in VmbFrameCallback | callback Callback to be run when the frame is complete. NULL is
Ok.

* VmbErrorSuccess: If no error
* VmbErrorApiNotStarted: VmbStartup() was not called before the current command

Vimba C API - Function Reference Manual

31/35

16 Image preparation and acquisition / / /

* VmbErrorBadHandle: The given frame is not valid
¢ VmbErrorStructSize: The given struct size is not valid for this version of the API

The given frame is put into a queue that will be filled sequentially. The orderin

Note which the frames are filled is determined by the order in which they are queued.

If the frame was announced with VmbFrameAnnounce() before, the applica-

@ tion has to ensure that the frame is also revoked by calling VmbFrameRevoke
or VmbFrameRevokeAll when cleaning up.

16.7 VmbCaptureFrameWait()

Wait for a queued frame to be filled (or dequeued).

Type Name Description
in const VmbHandle t | cameraHandle | Handle of the camera
in const VmbFrame_t* | pFrame Pointer to an already announced & queued frame
in VmbUint32_t timeout Timeout (in milliseconds)

* VmbErrorSuccess: If no error

* VmbErrorTimeout: Call timed out

* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

16.8 VmbCaptureQueueFlush()

Flush the capture queue.
Type Name Description
in const VmbHandle t | cameraHandle | Handle of the camera to flush

* VmbErrorSuccess: If no error
* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

Note All the currently queued frames will be returned to the user, leaving no frames
in the input queue. After this call, no frame notification will occur until frames
are queued again.

Vimba C API - Function Reference Manual

32/35

17 Interface Enumeration & Information

/1]

17 Interface Enumeration &
Information

17.1 VmblinterfacesList()

List all the interfaces currently visible to VimbaC.

Type ‘ Name ‘ Description
out VmbInterfaceInfo_t* | pInterfacelnfo Array of VmbInterfacelnfo_t, allocated by the
caller. Theinterface listis copied here. May be
NULL.
in VmbUint32_t listLength Number of entries in the caller's pList array
out VmbUint32_t* pNumFound Number ofinterfaces found (may be more than
listLength!) returned here. May be NULL.
in VmbUint32_t sizeofInterfacelnfo | Size of one VmbInterfaceInfo_t entry

* VmbErrorSuccess: If no error
* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorStructSize: The given struct size is not valid for this API version

* VmbErrorMoreData: More data was returned than space was provided

* VmbErrorBadParameter: pInterfacelnfo and pNumFound were both NULL

Note

®

All the interfaces known via GenICam TransportLayers are listed by this com-
mand and filled into the provided array. Interfaces may correspond to adapter
cards or frame grabber cards or, in the case of FireWire to the whole 1394 infras-
tructure, forinstance. If "pInterfacelnfo" is NULL on entry, only the number of
interfaces is returned in "pNumFound".

17.2 VmblinterfaceOpen|)

Open an interface handle for feature access.

Type Name Description

in const char*

idString

The unique ID of the interface to get the handle for

out VmbHandle_ tx*

pInterfaceHandle

The handle for this interface.

* VmbErrorSuccess: If no error
* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorNotFound: The designated interface cannot be found

* VmbErrorBadParameter: pInterfaceHandle was NULL

Note

®

An interface can be opened if interface-specific control or information is re-
quired, e.g. the number of devices attached to a specific interface. Access is
then possible via feature access methods.

Vimba C API - Function Reference Manual

33/35

17 Interface Enumeration & Information / / /

17.3 VmbinterfaceClosel)

Close an interface.

Description

in const VmbHandle_t | interfaceHandle | The handle of the interface to close.

* VmbErrorSuccess: If no error
* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

Note
@ After configuration of the interface, close it by calling this function.

Vimba C API - Function Reference Manual

34/35

18 Ancillary data / / /

18 Ancillary data
18.1 VmbAncillaryDataOpen|)

Get a working handle to allow access to the elements of the ancillary data via feature access.
Type ‘ Name ‘ Description
in VmbFrame_t* | pFrame Pointer to a filled frame
out VmbHandle_t* | pAncillaryDataHandle | Handle to the ancillary data inside the frame

* VmbErrorSuccess: If no error
* VmbErrorApiNotStarted: VmbStartup() was not called before the current command

Note
@ This function can only succeed if the given frame has been filled by the API.

18.2 VmbAncillaryDataClose()

Destroy the working handle to the ancillary data inside a frame.

Description

in VmbHandle_t | ancillaryDataHandle | Handle to ancillary frame data

* VmbErrorSuccess: If no error
* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

Note
After reading the ancillary data and before re-queuing the frame, ancillary data

@ must be closed.

Vimba C API - Function Reference Manual

35/35

19 Raw memory/register access

/1/

19 Raw memory/register access
19.1 VmbMemoryRead|)

Read an array of bytes.

Type Name Description
in const VmbHandle_t | handle Handle for a module that allows memory access
in VmbUint64_t address Address to be used for this read operation
in VmbUint32_t bufferSize Size of the data buffer to read
out charx dataBuffer Buffer to be filled
out VmbUint32_tx* pSizeComplete | Size of the data actually read

* VmbErrorSuccess: If no error
* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

* VmbErrorInvalidAccess: Operation is invalid with the current access mode

19.2 VmbMemoryWrite|()

Write an array of bytes.

Type Name Description
in const VmbHandle_t | handle Handle for a module that allows memory access
in VmbUint64_t address Address to be used for this read operation
in VmbUint32_t bufferSize Size of the data buffer to write
in const charx dataBuffer Data to write
out VmbUint32_t* pSizeComplete | Number of bytes successfully written; if an error oc-

curs this is less than size

* VmbErrorSuccess: If no error
* VmbErrorApiNotStarted: VmbStartup() was not called before the current command

* VmbErrorBadHandle: The given handle is not valid

* VmbErrorInvalidAccess: Operation is invalid with the current access mode

* VmbErrorMoreData: Not all data was written; see pSizeComplete value for the number of bytes

written

19.3 VmbRegistersRead()

Read an array of registers.

Vimba C API - Function Reference Manual

36/35

19 Raw memory/register access / / /

Type Name Description
in const VmbHandle_t | handle Handle for a module that allows register ac-
cess
in VmbUint32_t readCount Number of registers to be read
in const VmbUint64_t* | pAddressArray Array of addresses to be used for this read op-
eration
out VmbUint64_tx* pDataArray Array of registers to be used for this read op-
eration
out VmbUint32_tx* pNumCompleteReads | Number of reads completed

* VmbErrorSuccess: If no error

* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

* VmbErrorIncomplete: Not all the requested reads could be completed

Note Two arrays of data must be provided: an array of register addresses and one for
corresponding values to be read. The registers are read consecutively until an
error occurs or all registers are written successfully.

19.4 VmbRegistersWrite|()

Write an array of registers.
Type Name Description

in const VmbHandle_t | handle Handle for a module that allows register ac-
cess

in VmbUint32_t writeCount Number of registers to be written

in const VmbUint64_t* | pAddressArray Array of addresses to be used for this write
operation

in const VmbUint64_t* | pDataArray Array of reads to be used for this write opera-
tion

out VmbUint32_tx* pNumCompleteWrites | Number of writes completed

* VmbErrorSuccess: If no error

* VmbErrorApiNotStarted: VmbStartup() was not called before the current command
* VmbErrorBadHandle: The given handle is not valid

e VmbErrorInvalidAccess: Operation is invalid with the current access mode

* VmbErrorIncomplete: Not all the requested writes could be completed

Note Two arrays of data must be provided: an array of register addresses and one with
the corresponding values to be written to these addresses. The registers are

@ written consecutively until an error occurs or all registers are written success-
fully.

Vimba C API - Function Reference Manual

37/35

	Contacting Allied Vision Technologies
	Introduction
	Conventions used in this manual
	Styles
	Symbols

	Callbacks
	VmbInvalidationCallback
	VmbFrameCallback

	API Version
	VmbVersionQuery()

	API Initialization
	VmbStartup()
	VmbShutdown()

	Camera Enumeration & Information
	VmbCamerasList()
	VmbCameraInfoQuery()
	VmbCameraOpen()
	VmbCameraClose()

	Features
	VmbFeaturesList()
	VmbFeatureInfoQuery()
	VmbFeatureListAffected()
	VmbFeatureListSelected()
	VmbFeatureAccessQuery()

	Integer
	VmbFeatureIntGet()
	VmbFeatureIntSet()
	VmbFeatureIntRangeQuery()
	VmbFeatureIntIncrementQuery()

	Float
	VmbFeatureFloatGet()
	VmbFeatureFloatSet()
	VmbFeatureFloatRangeQuery()

	Enum
	VmbFeatureEnumGet()
	VmbFeatureEnumSet()
	VmbFeatureEnumRangeQuery()
	VmbFeatureEnumIsAvailable()
	VmbFeatureEnumAsInt()
	VmbFeatureEnumAsString()
	VmbFeatureEnumEntryGet()

	String
	VmbFeatureStringGet()
	VmbFeatureStringSet()
	VmbFeatureStringMaxlengthQuery()

	Boolean
	VmbFeatureBoolGet()
	VmbFeatureBoolSet()

	Command
	VmbFeatureCommandRun()
	VmbFeatureCommandIsDone()

	Raw
	VmbFeatureRawGet()
	VmbFeatureRawSet()
	VmbFeatureRawLengthQuery()

	Feature invalidation
	VmbFeatureInvalidationRegister()
	VmbFeatureInvalidationUnregister()

	 Image preparation and acquisition
	VmbFrameAnnounce()
	VmbFrameRevoke()
	VmbFrameRevokeAll()
	VmbCaptureStart()
	VmbCaptureEnd()
	VmbCaptureFrameQueue()
	VmbCaptureFrameWait()
	VmbCaptureQueueFlush()

	Interface Enumeration & Information
	VmbInterfacesList()
	VmbInterfaceOpen()
	VmbInterfaceClose()

	Ancillary data
	VmbAncillaryDataOpen()
	VmbAncillaryDataClose()

	Raw memory/register access
	VmbMemoryRead()
	VmbMemoryWrite()
	VmbRegistersRead()
	VmbRegistersWrite()

