
Vimba C API

Vimba C API

Programmer's Manual

V1.2
2013-Aug-28

Allied Vision Technologies GmbH
Taschenweg 2a
D-07646 Stadtroda / Germany



Legal Notice
Trademarks

Unless stated otherwise, all trademarks appearing in this document of Allied Vision Technologies are
brands protected by law.

Warranty

The information provided by Allied Vision Technologies is supplied without any guarantees or warranty
whatsoever, be it specific or implicit. Also excluded are all implicit warranties concerning the
negotiability, the suitability for specific applications or the non-breaking of laws and patents. Even if we
assume that the information supplied to us is accurate, errors and inaccuracy may still occur.

Copyright

All texts, pictures and graphics are protected by copyright and other laws protecting intellectual property.
It is not permitted to copy or modify them for trade use or transfer, nor may they be used on websites.

Allied Vision Technologies GmbH 08/2013

All rights reserved.
Managing Director: Mr. Frank Grube
Tax ID: DE 184383113

Headquarters:

Taschenweg 2a
D-07646 Stadtroda, Germany
Tel.: +49 (0)36428 6770
Fax: +49 (0)36428 677-28
e-mail: info@alliedvisiontec.com

Vimba C API - Programmer's Manual

2 / 19

mailto:info@alliedvisiontec.com?subject=AVT1394TL


Contents

Contents
1 Contacting Allied Vision Technologies 5

2 Introduction 6
2.1 Document history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Conventions used in this manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 General aspects of the API 7

4 Module Version 7

5 Module Initialization 7

6 List available cameras 8

7 Opening a camera 10

8 Feature Access 11

9 Image Acquisition and Capture 14
9.1 Image Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
9.2 Image Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

10 Additional configuration: List available interfaces 17

11 Error Codes 18

12 Function reference 19

Vimba C API - Programmer's Manual

3 / 19



Listings

Listings
1 Get Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Open Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Close Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Acquisition Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5 Payload Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6 Get Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7 Streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
8 Get Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Vimba C API - Programmer's Manual

4 / 19



1 Contacting Allied Vision Technologies

1 Contacting Allied Vision
Technologies

Note • Technical Information
http://www.alliedvisiontec.com

• Support
support@alliedvisiontec.com

Allied Vision Technologies GmbH (Headquarters)
Taschenweg 2a
07646 Stadtroda, Germany
Tel.: +49 36428-677-0
Fax.: +49 36428-677-28
Email: info@alliedvisiontec.com

Allied Vision Technologies Canada Inc.
101-3750 North Fraser Way
Burnaby, BC, V5J 5E9, Canada
Tel: +1 604-875-8855
Fax: +1 604-875-8856
Email: info@alliedvisiontec.com

Allied Vision Technologies Inc.
38 Washington Street
Newburyport, MA 01950, USA
Toll Free number +1 877-USA-1394
Tel.: +1 978-225-2030
Fax: +1 978-225-2029
Email: info@alliedvisiontec.com

Allied Vision Technologies Asia Pte. Ltd.
82 Playfair Road
#07-02 D'Lithium
Singapore 368001
Tel. +65 6634-9027
Fax:+65 6634-9029
Email: info@alliedvisiontec.com

Allied Vision Technologies (Shanghai) Co., Ltd.
2-2109 Hongwell International Plaza
1602# ZhongShanXi Road
Shanghai 200235, China
Tel: +86 (21) 64861133
Fax: +86 (21) 54233670
Email: info@alliedvisiontec.com

Vimba C API - Programmer's Manual

5 / 19

http://www.alliedvisiontec.com
mailto:support@alliedvisiontec.com
mailto:info@alliedvisiontec.com
mailto:info@alliedvisiontec.com
mailto:info@alliedvisiontec.com
mailto:info@alliedvisiontec.com
mailto:info@alliedvisiontec.com


2 Introduction

2 Introduction
2.1 Document history

Version Date Changes
1.0 2012-Nov-15 Initial version
1.1 2013-Feb-22 Different links, small changes
1.2 2013-Jun-18 Small corrections, layout changes

2.2 Conventions used in this manual

To give this manual an easily understood layout and to emphasize important information, the following
typographical styles and symbols are used:

2.2.1 Styles

Style Function Example
Bold Programs, inputs or highlight-

ing important things
bold

Courier Code listings etc. Input
Upper case Constants CONSTANT

Italics Modes, fields Mode

Parentheses and/or blue Links ( Link )

2.2.2 Symbols

Note

This symbol highlights important information.

Caution
This symbol highlights important instructions. You have to follow these instruc-
tions to avoid malfunctions.

www This symbol highlights URLs for further information. The URL itself is shown in
blue.
Example: http://www.alliedvisiontec.com

Vimba C API - Programmer's Manual

6 / 19

http://www.alliedvisiontec.com


5 Module Initialization

3 General aspects of the API
The purpose of AVT Vimba APIs is to enable programmers to interact with AVT cameras independent of the
interface technology (1394, Gigabit Ethernet). To achieve this, Vimba API utilizes different transport
layers to connect to the various camera interfaces and is therefore considered generic in terms of camera
interfaces. For accessing functionality of either Vimba or the connected cameras, you have two ways of
control: the generic functions on the one hand and feature access to Vimba, the transport layers, and the
cameras on the other. This manual deals only with the functional part.

4 Module Version
As new features are introduced to Vimba API, your software remains backward compatible. Use
VmbVersionQuery to check the version number of Vimba C API.

5 Module Initialization
Using Vimba API always begins with a call to VmbStartup. Before using any Vimba API functions (other
than VmbVersionQuery), you must initialize the API with this call. When you have finished using Vimba
API, call VmbShutdown to free resources. These two API functions must always be paired. It is possible,
although not recommended, to call the pair several times within the same program.

Vimba C API - Programmer's Manual

7 / 19



6 List available cameras

6 List available cameras
For a quick start see ListCameras example of the Vimba SDK.

VmbCamerasList will enumerate all cameras recognized by the underlying transport layers. With this
command, the programmer can fetch all static details of a camera such as its ID, its model and vendor
name or the ID of the interface (e.g. the network or 1394 adapter) it is connected to. For 1394 cameras
this attempt is straightforward, as opposed to GigE; due to its asynchronous nature, listing cameras over
the network is a two-step process. First a device discovery request has to be sent out before Vimba API
can be aware of all GigE devices that answered that request. Vimba API puts the developer in charge of
deciding how to send out discovery packets. However, this can be achieved through the command features
GeVDiscoveryAllOnce and GeVDiscoveryAllAuto, whereby the latter constantly emits discovery commands.
To stop discovery, use the command feature GeVDiscoveryAllNone. Note that these features can be applied
to all network interfaces as well as to one particular interface only. See Listing 1 for an example.

Listing 1: Get Cameras
1 bool bGigE;
2 VmbUint32_t nCount;
3 VmbCameraInfo_t *pCameras;
4

5 // We ask Vimba for the presence of a GigE transport layer
6 VmbError_t err = VmbFeatureBoolGet( gVimbaHandle , "GeVTLIsPresent", &bGigE );
7 if ( VmbErrorSuccess == err )
8 {
9 if ( true == bGigE )

10 {
11 // We query all network interfaces using the global Vimba handle
12 err = VmbFeatureCommandRun( gVimbaHandle , "GeVDiscoveryAllOnce" );
13 // Wait for the discovery packets to return
14 Sleep( 200 );
15 }
16 }
17 if ( VmbErrorSuccess == err )
18 { // Get the amount of connected cameras
19 err = VmbCamerasList( NULL, 0, &nCount, sizeof *pCameras );
20

21 if ( VmbErrorSuccess == err )
22 {
23 // Allocate accordingly
24 pCameras = new VmbCameraInfo_t[ nCount ];
25 // Get the cameras
26 err = VmbCamerasList( pCameras, nCount, &nCount, sizeof *pCameras );
27 // Print out each camera's name
28 for ( VmbUint32_t i=0; i<nCount; ++i )
29 {
30 std::cout << pCameras[i].cameraName << std::endl;
31 }
32 }
33 }

The VmbCameraInfo_t struct provides the entries listed in Table 1 for obtaining information about a
camera.
To get notified whenever a camera is detected, disconnected, or changes its open state, use
VmbFeatureInvalidationRegister to register a callback that gets executed on the according event.

Vimba C API - Programmer's Manual

8 / 19



6 List available cameras

Struct Entry Purpose

const char* cameraIdString The unique ID

const char* cameraName The name

const char* modelName The model name

const char* serialString The serial number

VmbAccessMode_t permittedAccess The mode to open the camera

const char* interfaceIdString The ID of the interface the camera is connected to

Table 1: VmbCameraInfo_t struct

Use the global Vimba handle for registration. The function pointer to the callback function has to be of
type VmbInvalidationCallback*. Note that the continuous sending of discovery packages has to be
turned on to enable Vimba to recognize GigE camera events. Please note that VmbShutdown blocks until
all callbacks have finished execution. Below you find a list of functions that cannot be called within the
callback routine.

• VmbStartup
• VmbShutdown
• VmbFeatureIntSet (and any other VmbFeature*Set function)
• VmbFeatureCommandRun

Vimba C API - Programmer's Manual

9 / 19



7 Opening a camera

7 Opening a camera
A camera must be opened to control it and to capture images. To open a camera, call VmbCameraOpen
and provide the ID of the camera as well as the desired access mode. GigE cameras may also be identified
by their IP or MAC address. When a camera has been opened successfully, a handle for further access is
returned. An example for opening a camera retrieved from the camera list is shown in Listing 2.

Listing 2: Open Camera
1 VmbCameraInfo_t *pCameras;
2 VmbHandle_t hCamera;
3

4 // Get all known cameras as described in chapter "List available cameras"
5

6 // Open the first camera
7 if ( VmbErrorSuccess == VmbCameraOpen( pCameras[0].cameraIdString ,
8 VmbAccessModeFull , hCamera ) )
9 {

10 std::cout << "Camera opened, handle [" << hCamera << "] retrieved.";
11 }

Listing 3 shows how to close a camera using VmbCameraClose and the previously retrieved handle.

Listing 3: Close Camera
1 if ( VmbErrorSuccess == VmbCameraClose( hCamera ) )
2 {
3 std::cout << "Camera closed." << std::endl;
4 }

Vimba C API - Programmer's Manual

10 / 19



8 Feature Access

8 Feature Access
For a quick start see ListFeatures example of the Vimba SDK.

GenICam-compliant features control and monitor various aspects of the drivers and cameras. For more
details on features see the Vimba SDK Features, the 1394 Transport Layer Feature Description or the GigE
Vision Transport Layer Feature Description.
There are several feature types which have type-specific properties and allow type-specific functionality:
Integer, Float, Enum, String, Boolean, Raw data. Additionally, since not all the features are available all
the time, there is a general necessity for querying the accessibility of features. Vimba API provides its
own set of access functions for every feature data type. The data type of a feature as well as additional
static properties of a feature are held in the VmbFeatureInfo_t struct.
To start continuous acquisition, set the feature AcquisitionMode to Continuous and run the command
feature AcquisitionStart as shown in Listing 4.

Listing 4: Acquisition Start
1 VmbHandle_t hCamera;
2

3 // Open the camera as shown in chapter "Opening a camera"
4

5 if ( VmbErrorSuccess == VmbFeatureEnumSet( hCamera, "AcquisitionMode",
6 "Continuous" ))
7 {
8 if ( VmbErrorSuccess = VmbFeatureCommandRun( hCamera, "AcquisitionStart" ))
9 {

10 std::cout << "Acquisition successfully started" << std::endl;
11 }
12 }

To read the image size in bytes, see Listing 5.

Listing 5: Payload Size
1 VmbHandle_t hCamera;
2

3 // Open the camera as shown in chapter "Opening a camera"
4

5 VmbInt64_t nPayloadSize;
6

7 if ( VmbErrorSuccess == VmbFeatureIntGet( hCamera, "PayloadSize",
8 &nPayloadSize ))
9 {

10 std::out << nPayloadSize << std::endl;
11 }

To simply query all available features of a camera, use VmbFeaturesList. This list does not change
while the camera is opened as shown in Listing 6.

Vimba C API - Programmer's Manual

11 / 19



8 Feature Access

Listing 6: Get Features
1 VmbFeatureInfo_t *pFeatures;
2 VmbUint32_t nCount = 0;
3 VmbHandle_t hCamera;
4

5 // Open the camera as shown in chapter "Opening a camera"
6

7 // Get the amount of features
8 VmbError_t err = VmbFeaturesList( hCamera, NULL, 0, &nCount, sizeof *pFeatures );
9

10 if ( VmbErrorSuccess == err && 0 < nCount )
11 {
12 // Allocate accordingly
13 pFeatures = new VmbFeatureInfo_t[ nCount ];
14

15 // Get the features
16 err = VmbFeaturesList( hCamera, pFeatures , nCount, &nCount,
17 sizeof *pFeatures );
18

19 // Print out their name and data type
20 for ( int i=0; i<nCount; ++i )
21 {
22 std::cout << "Feature " << pFeatures[i].name;
23 std::cout << " of type: " << pFeatures[i].featureDataType << std::endl;
24 }
25 }

Table 2 introduces basic features of all cameras. A feature has a name, a type, and access flags such as
read-permitted and write-permitted.

Feature Type Access Flags Description

AcquisitionMode Enumeration R/W The acquisitionmode of the camera. Value set: Con-
tinuous, SingleFrame, MultiFrame.

AcquisitionStart Command Start acquiring images.

AcquisitionStop Command Stop acquiring images.

PixelFormat Enumeration R/W The image format. Possible values are e.g.: Mono8,
RGB8Packed, YUV411Packed, BayerRG8, …

Width Uint32 R/W Image width, in pixels.

Height Uint32 R/W Image height, in pixels.

PayloadSize Uint32 R Number of bytes in the camera payload, including
the image.

Table 2: Basic features found on all cameras

Make sure to set the PacketSize feature of GigE cameras to a value supported by your network card. The
command feature GVSPAdjustPacketSize configures GigE cameras to use the largest possible packets.
Please note that the automatic adjustment might not lead to the expected results in a multiple camera
scenario (many cameras connected to one GigE interface). Here the available bandwidth has to be shared
between all cameras. See the feature StreamBytesPerSecond for this. Furthermore, the maximum packet

Vimba C API - Programmer's Manual

12 / 19



8 Feature Access

size might not be available by all connected cameras. If you experience problems streaming even when
the available bandwidth is equally shared between all cameras, try to reduce the packet size.
To get notified whenever a feature's value changes, use VmbFeatureInvalidationRegister to
register a callback that gets executed on the according event. For camera features, use the camera
handle for registration. The function pointer to the callback function has to be of type
VmbInvalidationCallback*. Please note that VmbShutdown only returns after all callbacks have
finished execution. Below you find a list of functions that cannot be called within the callback routine.

• VmbStartup
• VmbShutdown
• VmbFeatureIntSet (and any other VmbFeature*Set function)
• VmbFeatureCommandRun

Feature Type Operation Function
Enumeration Set VmbFeatureEnumSet

Get VmbFeatureEnumGet
Range VmbFeatureEnumRangeQuery
Other VmbFeatureEnumIsAvailable, VmbFeatureEnumAsInt,

VmbFeatureEnumAsString, VmbFeatureEnumEntryGet
Integer Set VmbFeatureIntSet

Get VmbFeatureIntGet
Range VmbFeatureIntRangeQuery
Other VmbFeatureIntIncrementQuery

Float Set VmbFeatureFloatSet
Get VmbFeatureFloatGet

String Set VmbFeatureStringSet
Get VmbFeatureStringGet
Range VmbFeatureStringMaxlengthQuery

Boolean Set VmbFeatureBoolSet
Get VmbFeatureBoolGet

Command Set VmbFeatureCommandRun
Get VmbFeatureCommandIsDone

Raw data Set VmbFeatureRawSet
Get VmbFeatureRawGet
Range VmbFeatureRawLengthQuery

Table 3: Functions for reading and writing a Feature

Vimba C API - Programmer's Manual

13 / 19



9 Image Acquisition and Capture

9 Image Acquisition and Capture
For a quick start see SynchronousGrab example of the Vimba SDK.

To obtain an image from your camera, first setup Vimba API to capture images, then start the acquisition
on the camera. These two concepts – capture and acquisition – while related, are independent operations
as it is shown below (the bracketed tokens refer to the example at the end of this chapter).
To capture images sent by the camera, follow these steps:

1. VmbFrameAnnounce – Make a frame known to the API so that it can allocate internal resources (1).

2. VmbCaptureStart – Start the capture engine of the API. Prepare the capture stream (2).

3. VmbCaptureFrameQueue – Queue (an already announced) frame. As images arrive from the
camera, they are placed in the next frame's buffer in the queue, and returned to the user (3).

4. When done, VmbCaptureEnd – Stop the capture engine and close the image capture stream.

5. If frames have been announced before, call VmbFrameRevokeAll eventually.

None of the steps above have a direct effect on the camera. To start image acquisition, follow these steps:

1. Set feature AcquisitionMode (e.g. to Continuous).

2. Run command feature AcquisitionStart (4).

To stop image acquisition, run command feature AcquisitionStop.
Normally, image capture is initialized and frame buffers are queued before the command AcquisitionStart
is run, but the order can vary depending on the application. To guarantee that a particular image is
captured, ensure that the frames are queued before AcquisitionStart.

9.1 Image Capture

Images are captured using frame buffers that are given to Vimba in calls to the asynchronous function
VmbCaptureFrameQueue (3). As long as the frame queue holds a frame whose buffer is large enough to
contain the image data, it is filled with the incoming image. Allocating a frame's buffer is left to the API,
although it is possible to allocate a piece of memory yourself that you then pass to the API. In both cases
first query the needed amount of memory through the feature PayloadSize (A) or calculate it yourself.
Allocate memory according to the payload size, declare a VmbFrame_t and let its buffer point to this
block of memory (B). After that, announce the frame (1), start the capture engine (2), and queue the
frame you have just created with VmbCaptureFrameQueue (3), so it can be filled when acquisition has
started.
Before a queued frame can be used or modified, the application needs to know when the image capture is
complete. Two mechanisms are available: either block your thread until capture is complete using
VmbCaptureFrameWait for just a single image, or register a callback (C) that gets executed when
capturing is complete. Use the camera handle for registration. The function pointer to the callback
function has to be of type VmbFrameCallback*. Within the callback routine, queue the frame again after
you have processed it. Below, you find a list of functions that cannot be called within the callback routine.

• VmbStartup

Vimba C API - Programmer's Manual

14 / 19



9 Image Acquisition and Capture

• VmbShutdown
• VmbCameraOpen
• VmbCameraClose
• VmbFrameAnnounce
• VmbFrameRevoke
• VmbFrameRevokeAll
• VmbCaptureStart
• VmbCaptureStop

NOTE: Always check that VmbFrame_t.receiveStatus equals VmbFrameStatusComplete when a
frame is returned to ensure the data is valid.
Many frames can be placed on the frame queue, and their image buffers will be filled in the same order
they were queued. To capture more images, keep submitting new frames (frames that you have processed
can be re-queued) as the old frames complete. Most applications need not queue more than two or three
frames at a time.
If you want to cancel all the frames on the queue, call VmbCaptureQueueFlush.

9.2 Image Acquisition

Image acquisition is set up with the features AcquisitionMode, AcquisitionStart (4). For stopping
acquisition, feature Acquisition is normally used.
Listing 7 shows a minimal streaming example (without error handling for the sake of simplicity).

Vimba C API - Programmer's Manual

15 / 19



9 Image Acquisition and Capture

Listing 7: Streaming
1 #define FRAME_COUNT 3 // We choose to use 3 frames
2 VmbError_t err; // Every Vimba function returns an error code that the
3 // programmer should always check for VmbErrorSuccess
4 VmbHandle_t hCamera // A handle to our opened camera
5 VmbFrame_t frames[FRAME_COUNT]; // A list of frames for streaming
6 VmbUInt64_t nPLS; // The payload size of one frame
7

8 // The callback that gets executed on every filled frame
9 void VMB_CALL FrameDoneCallback( const VmbHandle_t hCamera, VmbFrame_t *pFrame )

10 {
11 if ( VmbFrameStatusComplete == pFrame->receiveStatus )
12 {
13 std::cout << "Frame successfully received" << std::endl;
14 }
15 else
16 {
17 std::cout << "Error receiving frame" << std::endl;
18 }
19 VmbCaptureFrameQueue( hCamera, pFrame, FrameDoneCallback );
20 }
21

22 // Get all known cameras as described in chapter "List available cameras"
23 // and open the camera as shown in chapter "Opening a camera"
24

25 // Get the required size for one image
26 err = VmbFeatureIntGet( hCamera, "PayloadSize", &nPLS ); (A)
27 for ( int i=0; i<FRAME_COUNT; ++i )
28 {
29 // Allocate accordingly
30 frames[i].buffer = new char[ nPLS ]; (B)
31 frames[i].bufferSize = nPLS; (B)
32 // Anounce the frame
33 VmbFrameAnnounce( hCamera, frames[i], sizeof(VmbFrame_t) ); (1)
34 }
35

36 // Start capture engine on the host
37 err = VmbCaptureStart( hCamera ); (2)
38

39 // Queue frames and register callback
40 for ( int i=0; i<FRAME_COUNT; ++i )
41 {
42 VmbCaptureFrameQueue( hCamera, frames[i], (3)
43 FrameDoneCallback ); (C)
44 }
45

46 // Start acquisition on the camera
47 err = VmbFeatureCommandRun( hCamera, "AcquisitionStart" ); (4)

Vimba C API - Programmer's Manual

16 / 19



10 Additional configuration: List available interfaces

10 Additional configuration: List
available interfaces

VmbInterfacesList will enumerate all interfaces (GigE or 1394 adapters) recognized by the
underlying transport layers.
See Listing 8 for an example.

Listing 8: Get Interfaces
1 VmbUint32_t nCount;
2 VmbInterfaceInfo_t *pInterfaces;
3

4 // Get the amount of connected interfaces
5 VmbInterfacesList( NULL, 0, &nCount, sizeof *pInterfaces );
6

7 // Allocate accordingly
8 pInterfaces = new VmbInterfaceInfo_t[ nCount ];
9

10 // Get the interfaces
11 VmbInterfacesList( pCameras , nCount, &nCount, sizeof *pInterfaces );

The VmbInterfaceInfo_t struct provides the information about an interface as listed in Table 4.

Struct entry Purpose

const char* interfaceIdString The unique ID

VmbInterface_t interfaceType The camera interface type

const char* interfaceName The name

const char* serialString The serial number

VmbAccessMode_t permittedAccess The mode to open the interface

Table 4: VmbInterfaceInfo_t struct

To get notified whenever an interface is detected or disconnected, use
VmbFeatureInvalidationRegister to register a callback that gets executed on the according event.
Use the global Vimba handle for registration. The function pointer to the callback function has to be of
type VmbInvalidationCallback*. Please note that VmbShutdown blocks until all callbacks have
finished execution. Below you find a list of functions that cannot be called within the callback routine.

• VmbStartup
• VmbShutdown
• VmbFeatureIntSet (and any other VmbFeature*Set function)
• VmbFeatureCommandRun

Vimba C API - Programmer's Manual

17 / 19



11 Error Codes

11 Error Codes
All Vimba API functions return an error code of type VmbErrorType.
Typical errors are listed with each function in the Vimba C Function Reference Manual. However, any of the
error codes listed in Table 5 might be returned.

Error Code Int Value Description

VmbErrorSuccess 0 No error

VmbErrorInternalFault -1 Unexpected fault in Vimba or driver

VmbErrorApiNotStarted -2 Startup was not called before the current comand

VmbErrorNotFound -3 The designated instance (camera, feature etc.) cannot be
found

VmbErrorBadHandle -4 The given handle is not valid

VmbErrorDeviceNotOpen -5 Device was not opened for usage

VmbErrorInvalidAccess -6 Operation is invalid with the current access mode

VmbErrorBadParameter -7 One of the parameters is invalid (usually an illegal pointer)

VmbErrorStructSize -8 The given struct size is not valid for this version of the API

VmbErrorMoreData -9 More data available in a string/list than space is provided

VmbErrorWrongType -10 Wrong feature type for this access function

VmbErrorInvalidValue -11 The value is not valid; either out of bounds or not an incre-
ment of the minimum

VmbErrorTimeout -12 Timeout during wait

VmbErrorOther -13 Other error

VmbErrorResources -14 Resources not available (e.g. memory)

VmbErrorInvalidCall -15 Call is invalid in the current context (e.g. callback)

VmbErrorNoTL -16 No transport layers are found

VmbErrorNotImplemented -17 API feature is not implemented

VmbErrorNotSupported -18 API feature is not supported

VmbErrorIncomplete -19 A multiple registers read or write is partially completed

Table 5: Error codes returned by Vimba

Vimba C API - Programmer's Manual

18 / 19



12 Function reference

12 Function reference
For a complete list of all methods, see the Vimba C Function Reference Manual

Vimba C API - Programmer's Manual

19 / 19


	Contacting Allied Vision Technologies
	Introduction
	Document history
	Conventions used in this manual
	Styles
	Symbols


	General aspects of the API
	Module Version
	Module Initialization
	List available cameras
	Opening a camera
	Feature Access
	Image Acquisition and Capture
	Image Capture
	Image Acquisition

	Additional configuration: List available interfaces
	Error Codes
	Function reference

