
AVT Vimba

AVT Vimba

User Guide for Linux

V1.2
2013-Jun-25

Allied Vision Technologies GmbH
Taschenweg 2a
D-07646 Stadtroda / Germany

Contents

Contents
1 Contacting Allied Vision Technologies 4

2 Introduction 5
2.1 Document history . 5
2.2 Conventions used in this manual . 5

2.2.1 Styles . 5
2.2.2 Symbols . 5

3 Vimba SDK Overview 6
3.1 Architecture . 6
3.2 API Object Model . 7
3.3 Notifications . 8

4 Vimba Class Generator 9
4.1 Main window . 9
4.2 C++ code generation . 10

5 Installing AVT Vimba on Linux 11
5.1 Prerequisites . 11
5.2 Setting up AVT Vimba . 11

6 References 12

AVT Vimba - User Guide for Linux

2 / 12

List of Figures

List of Figures
1 Vimba Architecture . 6
2 Vimba API Object Model . 7
3 Vimba Class Generator - Main Window . 9

AVT Vimba - User Guide for Linux

3 / 12

1 Contacting Allied Vision Technologies

1 Contacting Allied Vision
Technologies

Note • Technical Information
http://www.alliedvisiontec.com

• Support
support@alliedvisiontec.com

Allied Vision Technologies GmbH (Headquarters)
Taschenweg 2a
07646 Stadtroda, Germany
Tel.: +49 36428-677-0
Fax.: +49 36428-677-28
Email: info@alliedvisiontec.com

Allied Vision Technologies Canada Inc.
101-3750 North Fraser Way
Burnaby, BC, V5J 5E9, Canada
Tel: +1 604-875-8855
Fax: +1 604-875-8856
Email: info@alliedvisiontec.com

Allied Vision Technologies Inc.
38 Washington Street
Newburyport, MA 01950, USA
Toll Free number +1 877-USA-1394
Tel.: +1 978-225-2030
Fax: +1 978-225-2029
Email: info@alliedvisiontec.com

Allied Vision Technologies Asia Pte. Ltd.
82 Playfair Road
#07-02 D'Lithium
Singapore 368001
Tel. +65 6634-9027
Fax:+65 6634-9029
Email: info@alliedvisiontec.com

Allied Vision Technologies (Shanghai) Co., Ltd.
2-2109 Hongwell International Plaza
1602# ZhongShanXi Road
Shanghai 200235, China
Tel: +86 (21) 64861133
Fax: +86 (21) 54233670
Email: info@alliedvisiontec.com

AVT Vimba - User Guide for Linux

4 / 12

http://www.alliedvisiontec.com
mailto:support@alliedvisiontec.com
mailto:info@alliedvisiontec.com
mailto:info@alliedvisiontec.com
mailto:info@alliedvisiontec.com
mailto:info@alliedvisiontec.com
mailto:info@alliedvisiontec.com

2 Introduction

2 Introduction
2.1 Document history

Version Date Changes
1.0 2013-Apr-03 Initial version
1.1 2013-Jun-18 Added chapter for Class Generator, small corrections, layout changes

2.2 Conventions used in this manual

To give this manual an easily understood layout and to emphasize important information, the following
typographical styles and symbols are used:

2.2.1 Styles

Style Function Example
Bold Programs, inputs or highlight-

ing important things
bold

Courier Code listings etc. Input
Upper case Constants CONSTANT

Italics Modes, fields Mode

Parentheses and/or blue Links (Link)

2.2.2 Symbols

Note

This symbol highlights important information.

Caution
This symbol highlights important instructions. You have to follow these instruc-
tions to avoid malfunctions.

www This symbol highlights URLs for further information. The URL itself is shown in
blue.
Example: http://www.alliedvisiontec.com

AVT Vimba - User Guide for Linux

5 / 12

http://www.alliedvisiontec.com

3 Vimba SDK Overview

3 Vimba SDK Overview
The Vimba SDK is a camera-independent SDK for the 32-bit and 64-bit operating systems Windows XP,
Windows 7, Windows 8, and various Linux distributions that can be applied for both AVT 1394 (Windows
only) and AVT GigE Vision cameras. With the Vimba SDK, your application immediately supports AVT's
1394a / 1394b digital cameras (Windows only) as well as AVT's GigE Vision cameras.

3.1 Architecture

Figure 1: Vimba Architecture

AVT Vimba - User Guide for Linux

6 / 12

3 Vimba SDK Overview

The Vimba SDK provides application programming interfaces (APIs) for different programming languages:
C and C++. All APIs cover the following functions:

• listing currently connected cameras

• controlling camera features

• receiving images from the camera

• notifications about cameras connecting or disconnecting

The Image Transform Library converts camera images into other pixel formats and creates color images
from raw images (debayering). This is separated for the C and C++ API.

The APIs use transport layer (TL) modules to actually communicate with the cameras. These modules
(currently only AVT GigE TL) are not directly accessible for the user application.

For more detailed information about the different APIs please look at the documents listed in section ??.

3.2 API Object Model

The Vimba APIs use a defined object model for providing access to the different entities. For object
oriented programming languages like C++, this object model is reflected in the API's class design, but
even the C API supports this model by using handles as a representation of the different objects.

Figure 2: Vimba API Object Model

The System object represents the API itself. Thus only one instance of it is available. The application has
to initialize the System object before using any other function. When the application has finished using

AVT Vimba - User Guide for Linux

7 / 12

3 Vimba SDK Overview

the API, it shuts it down through the System object. The System object holds a list of interfaces and
cameras internally and serves as the main access point to these objects.

A Camera object controls a physical camera and receives images. It provides the same set of functions
regardless of the underlying interface technology.

An Interface object represents a port on a physical interface card in the PC. Although a camera is
connected through an interface, it is not necessary to use an Interface object to access a Camera object.
This can be done directly via the System object. So the only purpose of the Interface object is to control
the settings of the corresponding interface card.

All these objects - System, Camera, and Interface - have a list of Feature objects. They reflect the settings
of these entities. The System Features contain information about API wide settings like what kind of
transport layer modules are loaded. The Camera Features can be used to configure camera settings like
exposure time or pixel format. Interface Features represent the settings of a physical interface card in the
PC like an IP address of a network interface card. Camera and Interface Features are usually different
according to the underlying interface technology.

Frame objects receive image data from the camera. They are created by the application and queued at the
corresponding Camera object. When an image was received, the next available Frame is filled and handed
over to the application through a dedicated notification. After the application processed the image data,
it should return the Frame to the API by re-enqueuing it at the corresponding Camera.

3.3 Notifications

In general, a Vision system consisting of cameras and PCs is asynchronous, which means that certain
events usually occur unexpectedly. This includes - among others - detection of cameras connected to the
PC or frame reception. A Vimba application can react on a particular event by registering a corresponding
handler function at the API, which in return will be called when the event occurs. The exact method how
to register an event handler depends on the used programming language. Have a look at the example
programs for more details.

Caution

The registered functions are usually called fromadifferent thread than the appli-
cation. So extra care must be taken when accessing data shared between these
threads (multithreading environment).
Furthermore, the Vimba API might be blocked while the event handler is exe-
cuted. Thus, it is highly recommended to exit the event handler function as fast
as possible.
Not all API functionsmaybe called from the event handler function. Formore de-
tails, see the Programmer's Reference document for the programming language
of your choice.

AVT Vimba - User Guide for Linux

8 / 12

4 Vimba Class Generator

4 Vimba Class Generator
The Vimba Class Generator is a tool for easily creating classes for Vimba C++ (Windows and Linux) and
Vimba.NET (Windows only) APIs that are more comfortable to use than the standard API. The generated
classes offer access functions for each found feature, depending on the type of the feature.

Note
After a firmware update, re-generate the files andmerge the access functions for
new features manually into your previously generated code.

4.1 Main window

Upon startup the Vimba Class Generator assembles all the cameras accessible by Vimba.

Figure 3: Vimba Class Generator - Main Window

The available cameras are listed in the box on the left side of the screen below Detected cameras. Select
the camera that you want code generated for.

Note
Youmay click the Refresh button above the listed cameras at any time to re-scan
for new cameras.

In the edit field below Destination Folder, you may enter the folder where the files will be generated. By
clicking the associated button, you may select a folder from the file system.

AVT Vimba - User Guide for Linux

9 / 12

4 Vimba Class Generator

The Vimba Class Generator will not overwrite existing files without warning. By selecting the check-box
Overwrite Files without Warning, you may change this behavior.

The options below Programming Language allow you to configure the code generation. By selecting the
tab, you may switch the programming language for creation. For more language-dependent options, see
chapter C++ code generation.

If everything is configured, the Run button becomes active. Clicking it will generate the code for the
selected camera, programming language and options.

Any message that is generated during selection of the options or during code generation is displayed in
the text box at the bottom of the window.

4.2 C++ code generation

In the C++ tab of the main window, you have the following options

• Class Name: The name of the generated class.

• Header File Name: The name of the header file to create.

• Source File Name: The name of the cpp file to create.

• Getter prefix: The text that is put before the feature name for each getter function.

• Getter suffix: The text that is put after the feature name for each getter function.

• Setter prefix: The text that is put before the feature name for each setter function.

• Setter suffix: The text that is put after the feature name for each setter function.

• Header template: The file that is used as a template for generating the header file.

• Source template: The file that is used as a template for generating the cpp file.

The template file for the header file may contain the following placeholders:

• ### HEADER_FILE_MACRO_NAME ###: Generated from the Header File Name in the main window.

• ### CLASS_NAME ###: Corresponds to Class Name in the main window.

• ### ENUM_DECLARATIONS ###: This is where the enum declarations are put.

• ### METHOD_DECLARATIONS ###: This is where the method declarations are put.

• ### VARIABLE_DECLARATIONS ###: This is where the variable declarations are put.

The template file for the cpp file may contain the following placeholders:

• ### HEADER_FILE_NAME ###: Corresponds to Header File Name in the main window.

• ### CLASS_NAME ###: Corresponds to Class Name in the main window.

• ### METHOD_IMPLEMENTATIONS ###: This is where the method implementations are put.

You may move around these variables in the template file to generate a file that better suits your
requirements.

AVT Vimba - User Guide for Linux

10 / 12

5 Installing AVT Vimba on Linux

5 Installing AVT Vimba on Linux

5.1 Prerequisites

If you wish to compile the examples that come with Vimba and the open source Vimba C++ API, you need
to make sure you have installed the following packages. You will probably find most of them being already
part of your system.

• tar

• make

• pkg-config

• g++ (Version 4.4.5 or above)

• glibc6 (Version 2.11 or above)

• Qt (Version 4.8.4)

• TinyXML (Version 2.5.3 or above)

Except for tar and the c runtime library glibc6, you will need these libraries only if you intend to compile
the Vimba examples or the Vimba C++ API. Use the provided make files to compile the examples. The
remaining necessary runtime libraries for executing the examples including the VimbaViewer are
provided with AVT Vimba.

5.2 Setting up AVT Vimba

AVT Vimba comes as a tarball. Simply uncompress the archive with the command tar -xf ./AVTVimba.tgz to
a directory you have writing privileges for. This will create a directoy named AVTVimba. First off navigate
to AVTVimba/AVTGigETL and execute the shell script Install.sh with root privileges (e.g. sudo
./Install.sh). This will register the GENICAM_GENTL32_PATH and / or the GENICAM_GENTL64_PATH
environment variable through a startup script in /etc/profile.d so that every GenICam GentTL consumer
(such as the examples that ship with AVT Vimba) can access the AVT Gigabit Ethernet Transport Layer.
Please note that you have to log off once before these changes will be applied to your system.
Now you are ready to run the VimbaViewer that can be found in Vimba/Viewer/Bin. This program allows
you to configure your AVT cameras and capture images. VimbaViewer must be run with root privileges
(e.g. sudo -E ./VimbaViewer) if you want to change the IP configuration of a camera in a foreign subnet
(running it as root user instead of using sudo -E will require you to set the environment variables from
above manually).
Furthermore you can run one of the many precompiled examples that can be found in
AVTVimba/VimbaC/Examples/Bin and AVTVimba/VimbaCPP/Examples/Bin. If you want to compile the
examples yourself navigate to Build/Make in the VimbaC and VimbaCPP examples folders and typemake in
your shell.

AVT Vimba - User Guide for Linux

11 / 12

6 References

6 References
The following table lists some documents with more detailed information about the components of AVT
Vimba. Please note that the links are valid only if the corresponding component has been installed.

AVT GigE Vision Transport Layer

• GigE Vision Transport Layer Feature Description.

AVT Image Transform Library

• Programmer's Manual.

Vimba C API

• Programmer's Manual

• Function Reference

• Vimba Features

Vimba C++ API

• Programmer's Manual

• Function Reference

• Vimba Features

AVT Vimba - User Guide for Linux

12 / 12

	Contacting Allied Vision Technologies
	Introduction
	Document history
	Conventions used in this manual
	Styles
	Symbols

	Vimba SDK Overview
	Architecture
	API Object Model
	Notifications

	Vimba Class Generator
	Main window
	C++ code generation

	Installing AVT Vimba on Linux
	Prerequisites
	Setting up AVT Vimba

	References

